Beomjin YUK Byeongseol KIM Soohyun YOON Seungbeom CHOI Joonsung BAE
This paper presents a driver status monitoring (DSM) system with body channel communication (BCC) technology to acquire the driver's physiological condition. Specifically, a conductive thread, the receiving electrode, is sewn to the surface of the seat so that the acquired signal can be continuously detected. As a signal transmission medium, body channel characteristics using the conductive thread electrode were investigated according to the driver's pose and the material of the driver's pants. Based on this, a BCC transceiver was implemented using an analog frequency modulation (FM) scheme to minimize the additional circuitry and system cost. We analyzed the heart rate variability (HRV) from the driver's electrocardiogram (ECG) and displayed the heart rate and Root Mean Square of Successive Differences (RMSSD) values together with the ECG waveform in real-time. A prototype of the DSM system with commercial-off-the-shelf (COTS) technology was implemented and tested. We verified that the proposed approach was robust to the driver's movements, showing the feasibility and validity of the DSM with BCC technology using a conductive thread electrode.
Sukhumarn ARCHASANTISUK Takahiro AOYAGI
Communication reliability and energy efficiency are important issues that have to be carefully considered in WBAN design. Due to the large path loss variation of the WBAN channel, transmission power control, which adaptively adjusts the radio transmit power to suit the channel condition, is considered in this paper. Human motion is one of the dominant factors that affect the channel characteristics in WBAN. Therefore, this paper introduces motion-aware temporal correlation model-based transmission power control that combines human motion classification and transmission power control to provide an effective approach to realizing reliable and energy-efficient WBAN communication. The human motion classification adopted in this study uses only the received signal strength to identify the human motion; no additional tool is required. The knowledge of human motion is then used to accurately estimate the channel condition and suitably select the transmit power. A performance evaluation shows that the proposed method works well both in the low and high WBAN network loads. Compared to using the fixed Tx power of -5dBm, the proposed method had similar packet loss rate but 20-28 and 27-33 percent lower average energy consumption for the low network traffic and high network traffic cases, respectively.
Ryuji KOHNO Takumi KOBAYASHI Chika SUGIMOTO Yukihiro KINJO Matti HÄMÄLÄINEN Jari IINATTI
This paper provides perspectives for future medical healthcare social services and businesses that integrate advanced information and communication technology (ICT) and data science. First, we propose a universal medical healthcare platform that consists of wireless body area network (BAN), cloud network and edge computer, big data mining server and repository with machine learning. Technical aspects of the platform are discussed, including the requirements of reliability, safety and security, i.e., so-called dependability. In addition, novel technologies for satisfying the requirements are introduced. Then primary uses of the platform for personalized medicine and regulatory compliance, and its secondary uses for commercial business and sustainable operation are discussed. We are aiming at operate the universal medical healthcare platform, which is based on the principle of regulatory science, regionally and globally. In this paper, trials carried out in Kanagawa, Japan and Oulu, Finland will be revealed to illustrate a future medical healthcare social infrastructure by expanding it to Asia-Pacific, Europe and the rest of the world. We are representing the activities of Kanagawa medical device regulatory science center and a joint proposal on security in the dependable medical healthcare platform. Novel schemes of ubiquitous rehabilitation based on analyses of the training effect by remote monitoring of activities and machine learning of patient's electrocardiography (ECG) with a neural network are proposed and briefly investigated.
Pongphan LEELATIEN Koichi ITO Kazuyuki SAITO Manmohan SHARMA Akram ALOMAINY
This paper presents a numerical study of the wireless channel characteristics of liver implants in a frequency range of 4.5-6.5GHz, considering different digital human phantoms by employing two inhomogeneous male and female models. Path loss data for in-body to on-body and in-body to off-body communication scenarios are provided. The influence of respiration-induced organ movement on signal attenuation is demonstrated. A narrower range of attenuation deviation is observed in the female model as compared to the male model. The path loss data in the female body is between 40-80dB which is around 5-10dB lower than the male model. Path loss data for the in-body to off-body scenario in both models suggest that in-body propagation is the main component of total path loss in the channel. The results demonstrate that channel characteristics are subject dependent, and thus indicate the need to take subject dependencies into consideration when investigating in-body communication channels.
Taiki IIDA Daisuke ANZAI Jianqing WANG
To improve the performance of capsule endoscope, it is important to add location information to the image data obtained by the capsule endoscope. There is a disadvantage that a lot of existing localization techniques require to measure channel model parameters in advance. To avoid such a troublesome pre-measurement, this paper pays attention to capsule endoscope localization based on an electromagnetic imaging technology which can estimate not only the location but also the internal structure of a human body. However, the electromagnetic imaging with high resolution has huge computational complexity, which should prevent us from carrying out real-time localization. To ensure the accurate real-time localization system without pre-measured model parameters, we apply genetic algorithm (GA) into the electromagnetic imaging-based localization method. Furthermore, we evaluate the proposed GA-based method in terms of the simulation time and the location estimation accuracy compared to the conventional methods. In addition, we show that the proposed GA-based method can perform more accurately than the other conventional methods, and also, much less computational complexity of the proposed method can be accomplished than a greedy algorithm-based method.
Xuan Sam NGUYEN Daehee KIM Sunshin AN
The new generation of telemedicine systems enables healthcare service providers to monitor patients not only in the hospital but also when they are at home. In order to efficiently exploit these systems, human information collected from end devices must be sent to the medical center through reliable data transmission. In this paper, we propose an adaptive relay transmission scheme to improve the reliability of data transmission for wireless body area networks. In our proposal, relay nodes that have successfully decoded a packet from the source node are selected as relay nodes in which the best relay with the highest channel gain is selected to forward the failed packet instead of the source node. The scheme addresses both the data collision problem and the inefficient relay selection in relay transmission. Our experimental results show that the proposed scheme provides a better performance than previous works in terms of the packet delivery ratio and end-to-end delay.
Juha PETÄJÄJÄRVI Heikki KARVONEN Konstantin MIKHAYLOV Aarno PÄRSSINEN Matti HÄMÄLÄINEN Jari IINATTI
This paper discusses the perspectives of using a wake-up receiver (WUR) in wireless body area network (WBAN) applications with event-driven data transfers. First we compare energy efficiency between the WUR-based and the duty-cycled medium access control protocol -based IEEE 802.15.6 compliant WBAN. Then, we review the architectures of state-of-the-art WURs and discuss their suitability for WBANs. The presented results clearly show that the radio frequency envelope detection based architecture features the lowest power consumption at a cost of sensitivity. The other architectures are capable of providing better sensitivity, but consume more power. Finally, we propose the design modification that enables using a WUR to receive the control commands beside the wake-up signals. The presented results reveal that use of this feature does not require complex modifications of the current architectures, but enables to improve energy efficiency and latency for small data blocks transfers.
Karma WANGCHUK Minseok KIM Jun-ichi TAKADA
To improve the outage performance of a wireless body area network (BAN), exploitation of the diversity in the channel obtained by letting different nodes cooperate and relay signals for each other is an attractive solution. We carry out multi-link channel measurements and modeling for all realistic locations of the on-body sensor nodes and for three different motion scenarios in a typical office environment to develop equivalent channel model for simple and practical cooperative transmission schemes. Using the developed model the performance of the transmission schemes are evaluated and compared. Incremental decode and forward relaying is found to be consistently better than the other schemes with gains of up to 16dB at 10% outage probability, and an average gain of more than 5.9dB for any location of the coordinator node. The best location of the coordinator node based on the performance is also determined. Such insights will be very useful in designing BANs.
In this letter, we propose a simple algorithm to jointly estimate the symbol timing offset (STO) and carrier frequency offset (CFO) of wireless body area network (WBAN) signals. The preamble specified in IEEE 802.15.6 WBAN is used to achieve an accurate timing and frequency estimation based on the differential correlation. Simulations demonstrate that the proposed joint estimation scheme can be effectively employed to get accurate STO and CFO estimate with less complexity.
IEEE 802.15.6 provides PHY and MAC layer profiles for wearable and implanted Wireless Body Area Networks (WBANs). The critical requirements of QoS guarantee and ultra-low-power are severe challenges when implementing IEEE 802.15.6. In this paper, the key problem in IEEE 802.15.6 standard that “How to allocate EAP (Exclusive Access Phase)?” is solved for the first time: An analysis of network performance indicates that too much EAP allocation can not promote traffic performance obviously and effectually. However, since EAP allocation plays an important role in guaranteeing quality of service, a customized and quantitative EAP allocation solution is proposed. Simulation results show that the solution can obtain the optimal network performance. Furthermore, the estimated models of delay and energy are developed, which help to design the WBAN according to application requirements and analyze the network performance according to the traffic characteristics. The models are simple, effective, and relatively accurate. Results show that the models have approximated mean and the correlation coefficient is greater than 0.95 compared with the simulations of IEEE 802.15.6 using NS2 platform. The work of this paper can solve crucial practical problems in using IEEE 802.15.6, and will propel WBANs applications widely.
Yuichi KAWAMOTO Hiroki NISHIYAMA Nei KATO Naoko YOSHIMURA Shinichi YAMAMOTO
The recent development of communication devices and wireless network technologies continues to advance the new era of the Internet and telecommunications. The various “things”, which include not only communication devices but also every other physical object on the planet, are also going to be connected to the Internet, and controlled through wireless networks. This concept, which is referred to as the “Internet of Things (IoT)”, has attracted much attention from many researchers in recent years. The concept of IoT can be associated with multiple research areas such as body area networks, Device-to-Device (D2D) communications networks, home area networks, Unmanned Aerial Vehicle (UAV) networks, satellite networks, and so forth. Also, there are various kinds of applications created by using IoT technologies. Thus, the concept of the IoT is expected to be integrated into our society and support our daily life in the near future. In this paper, we introduce different classifications of IoT with examples of utilizing IoT technologies. In addition, as an example of a practical system using IoT, a tsunami detection system (which is composed of a satellite, sensor terminals, and an active monitoring system for real-time simultaneous utilization of the devices) is introduced. Furthermore, the requirements of the next generation systems with the IoT are delineated in the paper.
Wireless body area networks (WBANs) have to work with low power and long lifetime to satisfy human biological safety requirements in e-health; therefore extremely low energy consumption is significant for WBANs. IEEE 802.15.6 standard has been published for wearable and implanted applications which provide communication technology requirements in WBANs. In this paper, the cross-layering optimization methodology is used to minimize the network energy consumption. Both the priority strategy and sleep mechanism in IEEE802.15.6 are considered. Macroscopic sleep model based on WBAN traffic priority and microscopic sleep model based on MAC structure are proposed. Then the network energy consumption optimization problem is solved by Lagrange dual method, the master problem are vertically decomposed into two sub problems in MAC and transport layers which are dealt with gradient method. Finally, a solution including self-adaption sleep mechanism and node rate controlling is proposed. The results of this paper indicate that the algorithm converges quickly and reduces the network energy consumption remarkably.
Jingjing SHI Yuki TAKAGI Daisuke ANZAI Jianqing WANG
Wireless body area networks (BANs) are attracting great attention as a future technology of wireless networks for healthcare and medical applications. Wireless BANs can generally be divided into two categories, i.e., wearable BANs and implant BANs. However, the performance requirements and channel propagation characteristics of these two kinds of BANs are quite different from each other, that is, wireless signals are approximately transmitted along the human body as a surface wave in wearable BANs, on the other hand, the signals are transmitted through the human tissues in implant BANs. As an effective solution for this problem, this paper first introduces a dual-mode communication system, which is composed of transmitters for in-body and on-body communications and a receiver for both communications. Then, we evaluate the bit error rate (BER) performance of the dual-mode communication system via computer simulations based on realistic channel models, which can reasonably represent the propagation characteristics of on-body and in-body communications. Finally, we conduct a link budget analysis based on the derived BER performances and discuss the link parameters including system margin, maximum link distance, data rate and required transmit power. Our computer simulation results and analysis results demonstrate the feasibility of the dual-mode communication system in wireless BANs.
Christian Henry Wijaya OEY Sangman MOH
One of the most important requirements for a routing protocol in wireless body area networks (WBANs) is to lower the network's temperature increase. The temperature of a node is closely related to its activities. The proactive routing approach, which is used by existing routing protocols for WBANs, tends to produce a higher temperature increase due to more frequent activities, compared to the on-demand reactive routing approach. In this paper, therefore, we propose a reactive routing protocol for WBANs called priority-based temperature-aware routing (PTR). In addition to lowering the temperature increase, the protocol also recognizes vital nodes and prioritizes them so they are able to achieve higher throughput. Simulation results show that the PTR protocol achieves a 50% lower temperature increase compared to the conventional temperature-aware routing protocol and is able to improve throughput of vital nodes by 35% when the priority mode is enabled.
Miyuki HIROSE Takehiko KOBAYASHI
This paper presents an experimental study of on-body ultra-wideband (UWB) radio propagation channels within an enclosed space. To facilitate high-speed wireless body area networks, UWB is a promising technology because of its low power consumption and anti-multipath capabilities. The motivation of this study is to examine the effects of nearby humans on the UWB channels by varying the population within an elevator cabin from one (subject alone) to 20 (full capacity of the elevator). The first domain (0 < delay, t ≤ 4ns) in the measured delay profiles was either a direct (for line-of-sight) or diffracted (for non-line-of-sight) wave, which was found almost unrelated to the population; whereas the second domain (t > 4ns) highly depended on it. Total received power and delay spreads decreased with increasing the population. In addition, by varying human population, average power delay profiles were modeled based on measurements.
Alice PELLEGRINI Alessio BRIZZI Lianhong ZHANG Khaleda ALI Yang HAO
The extensive study and design of Body Area Networks (BANs) and development of related applications have been an object of interest during the last few years. Indeed, the majority of applications have been developed to operate at frequencies up to X band. However nowadays, a new growing attention is being focused on moving the study of BANs to higher frequencies such as those in V andW bands. The characterization of the on-body propagation channel is therefore essential for the design of reliable mm-wave BAN systems. However the classical methods (FDTD, MoM, FEM) commonly used at lower frequencies are not computationally efficient at mm-wave due to the large amount of mesh elements needed to discretize an electrically large geometry such as the human body. To overcome this issue, a ray tracing technique, generally used for characterizing indoor propagation, has been used to analyze a specific channel: chest-to-belt link. The reliability of this high frequency method has been investigated in this paper considering three different test cases. Moreover, a comparison of simulations and measurements, both performed on a body centric scenario at 94GHz, is also presented as well.
Kazuhiro HONDA Kun LI Koichi OGAWA
This paper presents the shadowing analysis of a body area network (BAN) diversity antenna based on the statistical measurements of the human walking motion. First, the dynamic characteristics of the arm-swing motion were measured using human subjects, and a statistical analysis was then carried out using the measured data to extract useful information for the analysis of a BAN diversity antenna. Second, the analytical results of the shadowing effects of the BAN antenna were shown based on the statistical data of the swing motion. The difference between the typical and the realistic arm-swinging models significantly affected the bit error rate (BER) characteristic of the BAN antenna. To eliminate the shadowing caused by the movement of the arms, a BAN diversity antenna was used. Particular emphasis was placed on the evaluation of the spatial separation of the diversity antennas to attain reduction of the signal-to-noise ratio (SNR) required to achieve a specific BER performance, considering the combined outcome of shadowing and multipath fading unique to BAN antenna systems. We determined that an antenna angle separation of greater than 80° is required to reduce the shadowing effects when the diversity antenna is mounted at the left waist in a symmetrical configuration. Further, an antenna angle separation of 120° is required when the diversity antenna is mounted in an asymmetric configuration.
Seungku KIM Huan-Bang LI Doo-Seop EOM
This paper presents an independent sleep scheduling protocol for energy-efficient wireless body area networks. We designed the proposed protocol based on the IEEE 802.15.6 standard that is flexible to cover various application requirements for WBAN. The target of the proposed protocol is applications that generate aperiodic and intermittent traffic. Thus, the node providing these applications wakes up only when a new event occurs. We perform the numerical analysis and the simulation to compare the IEEE 802.15.6 without and with the independent sleep scheduling protocol. The results show that the proposed protocol increases energy-efficiency in case of large data size as well as long data occurrence interval.
A sub-mW current-reuse CMOS VCO is presented for wireless sensor network applications. In order to break the interdependence between the current consumption and the phase noise performance in the conventional current-reuse structure, a tail current source is added to the switching core in such a way that they are simultaneously switched during operation. With this, the current consumption can be maintained at a minimum level while the FET size can be optimally determined for large swing and good phase noise performances. The proposed VCO's advantage of achieving low phase noise at low current consumption is clearly demonstrated by simulations in comparison to the conventional structure. The proposed VCO is implemented in 0.13 µm CMOS. It dissipates 0.6 mW from 1.2 V supply. The measured phase noise at the output frequency of 2.28 GHz is -121 dBc/Hz at 1 MHz offset.
BeomSeok KIM Jinsung CHO Dae-Young KIM
Wireless body area networks (WBANs) provide medical and/or consumer electronics (CE) services within the vicinity of a human body. In a WBAN environment, immediate and reliable data transmissions during an emergency situation should be supported for medical services. In this letter, we propose a flexible emergency handling scheme for WBAN MAC protocols. The proposed scheme can be applied to superframe-structured MAC protocols such as IEEE 802.15.4 and its extended versions. In addition, our scheme can be incorporated into the current working draft for IEEE 802.15.6 standards. Extensive simulations were performed and the low latency of emergent traffics was validated.