Feng WANG Xiangyu WEN Lisheng LI Yan WEN Shidong ZHANG Yang LIU
The rapid advancement of cloud-edge-end collaboration offers a feasible solution to realize low-delay and low-energy-consumption data processing for internet of things (IoT)-based smart distribution grid. The major concern of cloud-edge-end collaboration lies on resource management. However, the joint optimization of heterogeneous resources involves multiple timescales, and the optimization decisions of different timescales are intertwined. In addition, burst electromagnetic interference will affect the channel environment of the distribution grid, leading to inaccuracies in optimization decisions, which can result in negative influences such as slow convergence and strong fluctuations. Hence, we propose a cloud-edge-end collaborative multi-timescale multi-service resource management algorithm. Large-timescale device scheduling is optimized by sliding window pricing matching, which enables accurate matching estimation and effective conflict elimination. Small-timescale compression level selection and power control are jointly optimized by disturbance-robust upper confidence bound (UCB), which perceives the presence of electromagnetic interference and adjusts exploration tendency for convergence improvement. Simulation outcomes illustrate the excellent performance of the proposed algorithm.
Jun-Feng LIU Yuan FENG Zeng-Hui LI Jing-Wei TANG
To improve the control performance of the permanent magnet synchronous motor speed control system, the fractional order calculus theory is combined with the sliding mode control to design the fractional order integral sliding mode sliding mode surface (FOISM) to improve the robustness of the system. Secondly, considering the existence of chattering phenomenon in sliding mode control, a new second-order sliding mode reaching law (NSOSMRL) is designed to improve the control accuracy of the system. Finally, the effectiveness of the proposed strategy is demonstrated by simulation.
Qingqing TU Zheng DONG Xianbing ZOU Ning WEI
Despite the appealing advantages of reconfigurable intelligent surfaces (RIS) aided mmWave communications, there remain practical issues that need to be addressed before the large-scale deployment of RISs in future wireless networks. In this study, we jointly consider the non-neglectable practical issues in a multi-RIS-aided mmWave system, which can significantly affect the secrecy performance, including the high computational complexity, imperfect channel state information (CSI), and finite resolution of phase shifters. To solve this non-convex challenging stochastic optimization problem, we propose a robust and low-complexity algorithm to maximize the achievable secrete rate. Specially, by combining the benefits of fractional programming and the stochastic successive convex approximation techniques, we transform the joint optimization problem into some convex ones and solve them sub-optimally. The theoretical analysis and simulation results demonstrate that the proposed algorithms could mitigate the joint negative effects of practical issues and yielded a tradeoff between secure performance and complexity/overhead outperforming non-robust benchmarks, which increases the robustness and flexibility of multiple RIS deployments in future wireless networks.
The robust recursive identification method of ARX models is proposed using the beta divergence. The proposed parameter update law suppresses the effect of outliers using a weight function that is automatically determined by minimizing the beta divergence. A numerical example illustrates the efficacy of the proposed method.
Lei LI Hong-Jun ZHANG Hang-Yu FAN Zhe-Ming LU
Until today, digital image watermarking has not been large-scale used in the industry. The first reason is that the watermarking efficiency is low and the real-time performance cannot be satisfied. The second reason is that the watermarking scheme cannot cope with various attacks. To solve above problems, this paper presents a multi-domain based digital image watermarking scheme, where a fast DFT (Discrete Fourier Transform) based watermarking method is proposed for synchronization correction and an IWT-DCT (Integer Wavelet Transform-Discrete Cosine Transform) based watermarking method is proposed for information embedding. The proposed scheme has high efficiency during embedding and extraction. Compared with five existing schemes, the robustness of our scheme is very strong and our scheme can cope with many common attacks and compound attacks, and thus can be used in wide application scenarios.
Hiroki YAMAMURO Keisuke HARA Masayuki TEZUKA Yusuke YOSHIDA Keisuke TANAKA
Message franking is introduced by Facebook in end-to-end encrypted messaging services. It allows to produce verifiable reports of malicious messages by including cryptographic proofs, called reporting tags, generated by Facebook. Recently, Grubbs et al. (CRYPTO'17) proceeded with the formal study of message franking and introduced committing authenticated encryption with associated data (CAEAD) as a core primitive for obtaining message franking. In this work, we aim to enhance the security of message franking and introduce forward security and updates of reporting tags for message franking. Forward security guarantees the security associated with the past keys even if the current keys are exposed and updates of reporting tags allow for reporting malicious messages after keys are updated. To this end, we firstly propose the notion of key-evolving message franking with updatable reporting tags including additional key and reporting tag update algorithms. Then, we formalize five security requirements: confidentiality, ciphertext integrity, unforgeability, receiver binding, and sender binding. Finally, we show a construction of forward secure message franking with updatable reporting tags based on CAEAD, forward secure pseudorandom generator, and updatable message authentication code.
Masanori TSUJIKAWA Yoshinobu KAJIKAWA
In this paper, we propose a low-complexity and accurate noise suppression based on an a priori SNR (Speech to Noise Ratio) model for greater robustness w.r.t. short-term noise-fluctuation. The a priori SNR, the ratio of speech spectra and noise spectra in the spectral domain, represents the difference between speech features and noise features in the feature domain, including the mel-cepstral domain and the logarithmic power spectral domain. This is because logarithmic operations are used for domain conversions. Therefore, an a priori SNR model can easily be expressed in terms of the difference between the speech model and the noise model, which are modeled by the Gaussian mixture models, and it can be generated with low computational cost. By using a priori SNRs accurately estimated on the basis of an a priori SNR model, it is possible to calculate accurate coefficients of noise suppression filters taking into account the variance of noise, without serious increase in computational cost over that of a conventional model-based Wiener filter (MBW). We have conducted in-car speech recognition evaluation using the CENSREC-2 database, and a comparison of the proposed method with a conventional MBW showed that the recognition error rate for all noise environments was reduced by 9%, and that, notably, that for audio-noise environments was reduced by 11%. We show that the proposed method can be processed with low levels of computational and memory resources through implementation on a digital signal processor.
Shaorong HU Yuqi ZHANG Yuefei JIN Ziqi DOU
Bus bunching often occurs in public transit system, resulting in a series of problems such as poor punctuality, long waiting time and low service quality. In this paper, we explore the influence of the discrete distribution of traffic operation state on the dynamic evolution of bus bunching. Firstly, we use self-organizing map (SOM) to find the threshold of bus bunching and analyze the factors that affect bus bunching based on GPS data of No. 600 bus line in Xi'an. Then, taking the bus headway as the research index, we construct the bus bunching mechanism model. Finally, a simulation platform is built by MATLAB to examine the trend of headway when various influencing factors show different distribution states along the bus line. In terms of influencing factors, inter vehicle speed, queuing time at intersection and loading time at station are shown to have a significant impact on headway between buses. In terms of the impact of the distribution of crowded road sections on headway, long-distance and concentrated crowded road sections will lead to large interval or bus bunching. When the traffic states along the bus line are randomly distributed among crowded, normal and free, the headway may fluctuate in a large range, which may result in bus bunching, or fluctuate in a small range and remain relatively stable. The headway change curve is determined by the distribution length of each traffic state along the bus line. The research results can help to formulate improvement measures according to traffic operation state for equilibrium bus headway and alleviating bus bunching.
Yuto KIHIRA Yusuke KODA Koji YAMAMOTO Takayuki NISHIO
Broadcast services for wireless local area networks (WLANs) are being standardized in the IEEE 802.11 task group bc. Envisaging the upcoming coexistence of broadcast access points (APs) with densely-deployed legacy APs, this paper addresses a learning-based spatial reuse with only partial receiver-awareness. This partial awareness means that the broadcast APs can leverage few acknowledgment frames (ACKs) from recipient stations (STAs). This is in view of the specific concerns of broadcast communications. In broadcast communications for a very large number of STAs, ACK implosions occur unless some STAs are stopped from responding with ACKs. Given this, the main contribution of this paper is to demonstrate the feasibility to improve the robustness of learning-based spatial reuse to hidden interferers only with the partial receiver-awareness while discarding any re-training of broadcast APs. The core idea is to leverage robust adversarial reinforcement learning (RARL), where before a hidden interferer is installed, a broadcast AP learns a rate adaptation policy in a competition with a proxy interferer that provides jamming signals intelligently. Therein, the recipient STAs experience interference and the partial STAs provide a feedback overestimating the effect of interference, allowing the broadcast AP to select a data rate to avoid frame losses in a broad range of recipient STAs. Simulations demonstrate the suppression of the throughput degradation under a sudden installation of a hidden interferer, indicating the feasibility of acquiring robustness to the hidden interferer.
Mitsuki ITO Fujun HE Kento YOKOUCHI Eiji OKI
This paper proposes a robust optimization model for probabilistic protection under uncertain capacity demands to minimize the total required capacity against multiple simultaneous failures of physical machines. The proposed model determines both primary and backup virtual machine allocations simultaneously under the probabilistic protection guarantee. To express the uncertainty of capacity demands, we introduce an uncertainty set that considers the upper bound of the total demand and the upper and lower bounds of each demand. The robust optimization technique is applied to the optimization model to deal with two uncertainties: failure event and capacity demand. With this technique, the model is formulated as a mixed integer linear programming (MILP) problem. To solve larger sized problems, a simulated annealing (SA) heuristic is introduced. In SA, we obtain the capacity demands by solving maximum flow problems. Numerical results show that our proposed model reduces the total required capacity compared with the conventional model by determining both primary and backup virtual machine allocations simultaneously. We also compare the results of MILP, SA, and a baseline greedy algorithm. For a larger sized problem, we obtain approximate solutions in a practical time by using SA and the greedy algorithm.
Han MA Qiaoling ZHANG Roubing TANG Lu ZHANG Yubo JIA
Recently, robust speech recognition for real-world applications has attracted much attention. This paper proposes a robust speech recognition method based on the teacher-student learning framework for domain adaptation. In particular, the student network will be trained based on a novel optimization criterion defined by the encoder outputs of both teacher and student networks rather than the final output posterior probabilities, which aims to make the noisy audio map to the same embedding space as clean audio, so that the student network is adaptive in the noise domain. Comparative experiments demonstrate that the proposed method obtained good robustness against noise.
Koji ISHIBASHI Takanori HARA Sota UCHIMURA Tetsuya IYE Yoshimi FUJII Takahide MURAKAMI Hiroyuki SHINBO
In this paper, we propose new radio access network (RAN) architecture for reliable millimeter-wave (mmWave) communications, which has the flexibility to meet users' diverse and fluctuating requirements in terms of communication quality. This architecture is composed of multiple radio units (RUs) connected to a common distributed unit (DU) via fronthaul links to virtually enlarge its coverage. We further present grant-free non-orthogonal multiple access (GF-NOMA) for low-latency uplink communications with a massive number of users and robust coordinated multi-point (CoMP) transmission using blockage prediction for uplink/downlink communications with a high data rate and a guaranteed minimum data rate as the technical pillars of the proposed RAN. The numerical results indicate that our proposed architecture can meet completely different user requirements and realize a user-centric design of the RAN for beyond 5G/6G.
Wenhao HUANG Akira TSUGE Yin CHEN Tadashi OKOSHI Jin NAKAZAWA
Crowdedness of buses is playing an increasingly important role in the disease control of COVID-19. The lack of a practical approach to sensing the crowdedness of buses is a major problem. This paper proposes a bus crowdedness sensing system which exploits deep learning-based object detection to count the numbers of passengers getting on and off a bus and thus estimate the crowdedness of buses in real time. In our prototype system, we combine YOLOv5s object detection model with Kalman Filter object tracking algorithm to implement a sensing algorithm running on a Jetson nano-based vehicular device mounted on a bus. By using the driving recorder video data taken from real bus, we experimentally evaluate the performance of the proposed sensing system to verify that our proposed system system improves counting accuracy and achieves real-time processing at the Jetson Nano platform.
The purpose of graph embedding is to learn a lower-dimensional embedding function for graph data. Existing methods usually rely on maximum likelihood estimation (MLE), and often learn an embedding function through conditional mean estimation (CME). However, MLE is well-known to be vulnerable to the contamination of outliers. Furthermore, CME might restrict the applicability of the graph embedding methods to a limited range of graph data. To cope with these problems, this paper proposes a novel method for graph embedding called the robust ratio graph embedding (RRGE). RRGE is based on the ratio estimation between the conditional and marginal probability distributions of link weights given data vectors, and would be applicable to a wider-range of graph data than CME-based methods. Moreover, to achieve outlier-robust estimation, the ratio is estimated with the γ-cross entropy, which is a robust alternative to the standard cross entropy. Numerical experiments on artificial data show that RRGE is robust against outliers and performs well even when CME-based methods do not work at all. Finally, the performance of the proposed method is demonstrated on realworld datasets using neural networks.
This paper presents robust optimization models for minimizing the required backup capacity while providing probabilistic protection against multiple simultaneous failures of physical machines under uncertain virtual machine capacities in a cloud provider. If random failures occur, the required capacities for virtual machines are allocated to the dedicated backup physical machines, which are determined in advance. We consider two uncertainties: failure event and virtual machine capacity. By adopting a robust optimization technique, we formulate six mixed integer linear programming problems. Numerical results show that for a small size problem, our presented models are applicable to the case that virtual machine capacities are uncertain, and by using these models, we can obtain the optimal solution of the allocation of virtual machines under the uncertainty. A simulated annealing heuristic is presented to solve large size problems. By using this heuristic, an approximate solution is obtained for a large size problem.
Thi Thu Thao KHONG Takashi NAKADA Yasuhiko NAKASHIMA
We introduce a hybrid Bayesian-convolutional neural network (hyBCNN) for improving the robustness against adversarial attacks and decreasing the computation time in the Bayesian inference phase. Our hyBCNN models are built from a part of BNN and CNN. Based on pre-trained CNNs, we only replace convolutional layers and activation function of the initial stage of CNNs with our Bayesian convolutional (BC) and Bayesian activation (BA) layers as a term of transfer learning. We keep the remainder of CNNs unchanged. We adopt the Bayes without Bayesian Learning (BwoBL) algorithm for hyBCNN networks to execute Bayesian inference towards adversarial robustness. Our proposal outperforms adversarial training and robust activation function, which are currently the outstanding defense methods of CNNs in the resistance to adversarial attacks such as PGD and C&W. Moreover, the proposed architecture with BwoBL can easily integrate into any pre-trained CNN, especially in scaling networks, e.g., ResNet and EfficientNet, with better performance on large-scale datasets. In particular, under l∞ norm PGD attack of pixel perturbation ε=4/255 with 100 iterations on ImageNet, our best hyBCNN EfficientNet reaches 93.92% top-5 accuracy without additional training.
Jinho CHOI Jaehan KIM Minkyoo SONG Hanna KIM Nahyeon PARK Minjae SEO Youngjin JIN Seungwon SHIN
Cryptocurrency abuse has become a critical problem. Due to the anonymous nature of cryptocurrency, criminals commonly adopt cryptocurrency for trading drugs and deceiving people without revealing their identities. Despite its significance and severity, only few works have studied how cryptocurrency has been abused in the real world, and they only provide some limited measurement results. Thus, to provide a more in-depth understanding on the cryptocurrency abuse cases, we present a large-scale analysis on various Bitcoin abuse types using 200,507 real-world reports collected by victims from 214 countries. We scrutinize observable abuse trends, which are closely related to real-world incidents, to understand the causality of the abuses. Furthermore, we investigate the semantics of various cryptocurrency abuse types to show that several abuse types overlap in meaning and to provide valuable insight into the public dataset. In addition, we delve into abuse channels to identify which widely-known platforms can be maliciously deployed by abusers following the COVID-19 pandemic outbreak. Consequently, we demonstrate the polarization property of Bitcoin addresses practically utilized on transactions, and confirm the possible usage of public report data for providing clues to track cyber threats. We expect that this research on Bitcoin abuse can empirically reach victims more effectively than cybercrime, which is subject to professional investigation.
Manufacturers are coping with increasing pressures in quality, cost and efficiency as more and more industries are moving from traditional setup to industry 4.0 based digitally transformed setup due to its numerous playbacks. Within the manufacturing domain organizational structures and processes are complex, therefore adopting industry 4.0 and finding an optimized re-engineered business process is difficult without using a systematic methodology. Authors have developed Business Process Re-engineering (BPR) and Business Process Optimization (BPO) methods but no consolidated methodology have been seen in the literature that is based on industry 4.0 and incorporates both the BPR and BPO. We have presented a consolidated and systematic re-engineering and optimization framework for a manufacturing industry setup. The proposed framework performs Evolutionary Multi-Objective Combinatorial Optimization using Multi-Objective Genetic Algorithm (MOGA). An example process from an aircraft manufacturing factory has been optimized and re-engineered with available set of technologies from industry 4.0 based on the criteria of lower cost, reduced processing time and reduced error rate. At the end to validate the proposed framework Business Process Model and Notation (BPMN) is used for simulations and perform comparison between AS-IS and TO-BE processes as it is widely used standard for business process specification. The proposed framework will be used in converting an industry from traditional setup to industry 4.0 resulting in cost reduction, increased performance and quality.
In this paper, for improving the robustness of D2D-based SNS by avoiding the cascading failure, we propose an autonomous decentralized friendship management called virtual temporal friendship creation. In our proposed virtual temporal friendship creation, some virtual temporal friendships are created among users based on an optimization problem to improve the robustness although these friendships cannot be used to perform the message exchange in SNS. We investigate the impact of creating a new friendship on the node resilience for the optimization problem. Then we consider an autonomous decentralized algorithm based on the obtained results for the optimization problem of virtual temporal friendship creation. We evaluate the performance of the virtual temporal friendship creation with simulation and investigate the effectiveness of this method by comparing with the performance of a method with meta-heuristic algorithm. From numerical examples, we show that the virtual temporal friendship creation can improve the robustness quickly in an autonomous and decentralized way.
Jinho CHOI Taehwa LEE Kwanwoo KIM Minjae SEO Jian CUI Seungwon SHIN
Bitcoin is currently a hot issue worldwide, and it is expected to become a new legal tender that replaces the current currency started with El Salvador. Due to the nature of cryptocurrency, however, difficulties in tracking led to the arising of misuses and abuses. Consequently, the pain of innocent victims by exploiting these bitcoins abuse is also increasing. We propose a way to detect new signatures by applying two-fold NLP-based clustering techniques to text data of Bitcoin abuse reports received from actual victims. By clustering the reports of text data, we were able to cluster the message templates as the same campaigns. The new approach using the abuse massage template representing clustering as a signature for identifying abusers is much efficacious.