The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel(1697hit)

941-960hit(1697hit)

  • Analytical BER Evaluation of ZF Transmit Beamformer with Channel Estimation Error

    Seungjae BAHNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:8
      Page(s):
    2097-2102

    The minimum mean square error (MMSE) multiple antenna transmission scheme for a code division multiple access (CDMA) system was recently developed by Choi and Perreau [1]. In this paper, we first show that the zero-forcing (ZF) transmit beamformer for multiple antenna CDMA system has the same form as the MMSE beamformer given by Choi and Perreau. We then develop an analytical method to obtain a closed-form expression of the bit error rate (BER) of the ZF transmit beamformer when there are channel estimation errors. The analytical and simulation results show good agreement, and confirm the importance of accurate channel state information (CSI) at the transmitter when using the ZF transmit beamformer.

  • Adaptive Decision Feedback Channel Estimation with Periodic Phase Correction for Frequency-Domain Equalization in DS-CDMA Mobile Radios

    Le LIU  Fumiyuki ADACHI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E90-B No:8
      Page(s):
    1997-2005

    Recently, the decision feedback channel estimation based on the minimum mean square error criterion (DF-MMSE-CE) using a fixed DF filter coefficient has been proposed to improve the channel estimation accuracy for DS-CDMA with frequency-domain equalization (FDE). In this paper, we propose adaptive DF (ADF)-MMSE-CE, in which the DF filter coefficient is adapted to changing channel conditions based on a recursive least square (RLS) algorithm. Furthermore, the channel estimate is phase corrected upon the reception of the periodically inserted pilot chip blocks. The average BER performance of DS-CDMA with MMSE-FDE using ADF-MMSE-CE is evaluated by computer simulation in a frequency-selective Rayleigh fading channel and the simulation results show that our proposed scheme is very robust against fast fading.

  • Adaptive Orthonormal Random Beamforming and Multi-Beam Selection for Cellular Systems

    Kai ZHANG  Zhisheng NIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:8
      Page(s):
    2090-2096

    Channel state information (CSI) at transmitter plays an important role for multiuser MIMO broadcast channels, but full CSI at transmitter is not available for many practical systems. Previous work has proposed orthonormal random beamforming (ORBF) [16] for MIMO broadcast channels with partial channel state information (CSI) feedback, and shown that ORBF achieves the optimal sum-rate capacity for a large number of users. However, for cellular systems with moderate number of users, i.e., no more than 64, ORBF only achieves slight performance gain. Therefore, we analyze the performance of ORBF with moderate number of users and total transmit power constraint and show that ORBF scheme is more efficient under low SNR. Then we propose an adaptive ORBF scheme that selects the number of random beams for simultaneous transmission according to the average signal-to-noise ratio (SNR). Moreover, a multi-beam selection (MBS) scheme that jointly selects the number and the subset of the multiple beams is proposed to further improve the system performance for low SNR cases. The simulation results show that the proposed schemes achieve significant performance improvement when the number of users is moderate.

  • Design of M-Channel Perfect Reconstruction Filter Banks with IIR-FIR Hybrid Building Blocks

    Shunsuke IWAMURA  Taizo SUZUKI  Yuichi TANAKA  Masaaki IKEHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:8
      Page(s):
    1636-1643

    This paper discusses a new structure of M-channel IIR perfect reconstruction filter banks. A novel building block defined as a cascade connection of some IIR building blocks and FIR building blocks is presented. An IIR building block is written by state space representation, where we easily obtain a stable filter bank by setting eigenvalues of the state transition matrix into the unit circle. Due to cascade connection of building blocks, we are able to design a system with a larger number of free parameters while keeping the stability. We introduce the condition which obtains the new building block without increasing of the filter order in spite of cascade connection. Additionally, by showing the simulation results, we show that this implementation has a better stopband attenuation than conventional methods.

  • VLSI Architecture for the Low-Computation Cycle and Power-Efficient Recursive DFT/IDFT Design

    Lan-Da VAN  Chin-Teng LIN  Yuan-Chu YU  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:8
      Page(s):
    1644-1652

    In this paper, we propose one low-computation cycle and power-efficient recursive discrete Fourier transform (DFT)/inverse DFT (IDFT) architecture adopting a hybrid of input strength reduction, the Chebyshev polynomial, and register-splitting schemes. Comparing with the existing recursive DFT/IDFT architectures, the proposed recursive architecture achieves a reduction in computation-cycle by half. Appling this novel low-computation cycle architecture, we could double the throughput rate and the channel density without increasing the operating frequency for the dual tone multi-frequency (DTMF) detector in the high channel density voice over packet (VoP) application. From the chip implementation results, the proposed architecture is capable of processing over 128 channels and each channel consumes 9.77 µW under 1.2 V@20 MHz in TSMC 0.13 1P8M CMOS process. The proposed VLSI implementation shows the power-efficient advantage by the low-computation cycle architecture.

  • On Constraints for Path Computation in Multi-Layer Switched Networks

    Bijan JABBARI  Shujia GONG  Eiji OKI  

     
    SURVEY PAPER-Traffic Engineering and Multi-Layer Networking

      Vol:
    E90-B No:8
      Page(s):
    1922-1927

    This paper considers optical transport and packet networks and discusses the constraints and solutions in computation of traffic engineering paths. We categorize the constraints into prunable or non-prunable classes. The former involves a simple metric which can be applied for filtering to determine the path. The latter requires a methodic consideration of more complicated network element attributes. An example of this type of constraints is path loss in which the metric can be evaluated only on a path basis, as opposed to simply applying the metric to the link. Another form of non-prunable constraint requires adaptation and common vector operation. Examples are the switching type adaptation and wavelength continuity, respectively. We provide possible solutions to cases with different classes of constraints and address the problem of path computation in support of traffic engineering in multi-layer networks where a set of constrains are concurrently present. The solutions include the application of channel graph and common vector to support switching type adaptation and label continuity, respectively.

  • Theoretical Analysis of Decision Directed Block Iterative Channel Estimation for OFDM Mobile Radio

    Koichi ADACHI  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1764-1772

    Orthogonal frequency division multiplexing (OFDM) is one of the promising transmission techniques for next generation mobile communication systems. Accurate channel estimation is essential for coherent OFDM signal transmission. So far, many pilot-assisted channel estimation schemes have been proposed. In the case of packet transmission, each received packet can be repeatedly processed by decision feedback to improve the channel estimation accuracy, resulting in a decision directed block iterative channel estimation (DD-BICE). However, decision feedback of erroneously detected data symbols degrades the packet error rate (PER) or bit error rate (BER) performance. In this paper, theoretical analysis is presented for the DD-BICE taking into account the decision feedback errors assuming quadrature phase shift keying (QPSK) data modulation. A 2-dimensional (2D) averaging filter is used for reducing the negative impact of decision feedback errors. The impacts of 2D averaging filter and antenna diversity reception are discussed and the validity of the theoretical analysis is confirmed by computer simulation.

  • Development and Performance Analysis of Non-data Aided MMSE Receiver for DS-CDMA Systems

    Tsui-Tsai LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1754-1763

    In this paper, a non-data aided minimum mean square error (MMSE) receiver with enhanced multiple access interference (MAI) suppression is proposed for direct-sequence code-division multiple-access (DS-CDMA) systems over a multipath fading channel. The design of the proposed receiver is via the following procedure: First, an adaptive correlator is constructed based on the linearly constrained minimum variance (LCMV) criterion to collect each multipath signal and suppress MAI blindly. A maximum ratio combiner is then utilized to coherently combine the correlator outputs. With a set of judicious chosen weight vectors, effective diversity combining can successfully suppress MAI and the desired signals can be effectively retained. Finally, further performance improvement against the finite data sample effect is achieved using a decision-aided scheme in which the channel response is obtained by the decision data and incorporated with the MMSE method to compute the refined weight vector. Performance analysis based on the output signal-to-interference-plus-noise ratio (SINR) is done to examine the efficacy of the proposed non-data aided MMSE receiver, which can offer the similar results as those of the MMSE receiver with the channel estimation correctly obtained beforehand. Computer simulation results then confirm correctness of the analysis results and demonstrate that the proposed blind receiver can successfully resist MAI as well as the finite data sample effect, and significantly outperform than the conventional blind receivers.

  • Linear Dispersion Codes with Limited Feedback

    Dan DENG  Jin-kang ZHU  Ling QIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1876-1879

    LDCs system with finite-rate error-free feedback is proposed in this letter. The optimal transmission codeword is selected at the receiver and the codeword index is sent to the transmitter. A simple random search algorithm is introduced for codebook generation. Moreover, the max-min singular value criterion is adopted for codeword selection. Simulation results showed that, with only 3-4 feedback bits, the low-complexity Zero-Forcing receiver can approach the Maximum-Likelihood (ML) performance.

  • DS-CDMA Data and Channel Estimation with Antenna Array for Radiolocation--GSIC/MP/PSP Approach

    Sunwoo KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1707-1712

    This paper considers a blind DS-CDMA data and channel estimation algorithm using a uniform circular array. The channels are assumed to be sparse and static during a short packet transmission period. The channel estimates for different users yield the explicit estimates of the angle and time of arrivals, which are used for radiolocation. Our algorithm employs three approaches to solve the problem. The generalized successive interference (GSIC) algorithm is used to eliminate the multiple access interference. Matching pursuit (MP) is applied to enforce the channel sparsity constraint. Per survivor processing (PSP) is then employed to jointly estimate the channel parameters and data symbols. By successfully incorporating them, we present the GSIC/MP/PSP algorithm. Its performance is demonstrated by computer simulations and compared to the GSIC/MP algorithm which requires training sequences.

  • Improved Blind Decodings of STBC with Unknown and Known Channel Correlation to Transmitter

    Zhengwei GONG  Taiyi ZHANG  Jing ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1864-1867

    The subspace algorithm can be utilized for the blind detection of space-time block codes (STBC) without knowledge of channel state information (CSI) both at the transmitter and receiver. However, its performance degrades when the channels are correlated. In this letter, we analyze the impact of channel correlation from the orthogonality loss between the transmit signal subspace (TSS) and the statistical noise subspace (SNS). Based on the decoding property of the subspace algorithm, we propose a revised detection in favor of the channel correlation matrix (CCM) only known to the receiver. Then, a joint transmit-receive preprocessing scheme is derived to obtain a further performance improvement when the CCM is available both at the transmitter and receiver. Analysis and simulation results indicate that the proposed methods can significantly improve the blind detection performance of STBC over the correlated channels.

  • Adaptive Hybrid Genetic Algorithm Parallel Interference Cancellation High Rate Multi-User Detection for Dual Rate W-CDMA Mobile Communications

    Liangfang NI  Sidan DU  Baoyu ZHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1692-1706

    Adaptive hybrid genetic algorithm concatenated with improved parallel interference cancellation, i.e. adaptive hybrid genetic algorithm parallel interference cancellation (AHGAPIC) was proposed. A study is conducted on the application of AHGAPIC to soft decoding high rate multi-user detection with diversity reception for dual-rate wideband DS-CDMA spread spectrum communications, aiming to mitigate the effect of multiple access interference. The relevant research has revealed that the local search capability of hybrid genetic algorithm (HGA) is still not good enough. Therefore, first, two evolutionary operations, i.e. inversion and insertion are merged into HGA to constitute a novel algorithm. With its moderate local search capability, this new algorithm can search for the global optimum region according to the information entropy, and then it is made adaptively vary its probabilities of crossover and mutation depending on the fitness values of the solutions to form the adaptive hybrid genetic algorithm (AHGA). Second, AHGA is utilized to effectively identify the better and better binary string to maximize the log-likelihood function of dual-rate multi-user detection. As AHGA converges to the optimum region, the control factor of the improved parallel interference cancellation (IPIC) detector is set to be the ratio of the average fitness value to the maximum fitness value of the population of AHGA. Finally, equipped with both the control factor and the binary string with the maximum fitness value as the initial data, the IPIC detector can rapidly find out the approximately optimum soft decoding vector. Then, it can obtain the approximately global optimum estimate point on the basis of the soft decoding rule, corresponding to the transmitted data bits. A lower bound of computational complexity has been achieved through simulations and qualitative analyses. The property of the proposed algorithm to converge rapidly leads to lower computational complexity. Emulation results have shown that the AHGAPIC soft decoding high rate multi-user detector is superior to other suboptimum detectors considered in this paper in terms of two points. They are the mitigation of multiple access interference and the resistance to near-far effects. Its performance is close to the sequential group optimum multi-user detector but with a shorter time delay.

  • Frequency-Domain MMSE Channel Estimation for Frequency-Domain Equalization of DS-CDMA Signals

    Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1746-1753

    Frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion can replace the conventional rake combining to significantly improve the bit error rate (BER) performance in a frequency-selective fading channel. MMSE-FDE requires an accurate estimate of the channel transfer function and the signal-to-noise power ratio (SNR). Direct application of pilot-assisted channel estimation (CE) degrades the BER performance, since the frequency spectrum of the pilot chip sequence is not constant over the spreading bandwidth. In this paper, we propose a pilot-assisted decision feedback frequency-domain MMSE-CE. The BER performance with the proposed pilot-assisted MMSE-CE in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. It is shown that MMSE-CE always gives a good BER performance irrespective of the choice of the pilot chip sequence and shows a high tracking ability against fading. For a spreading factor SF of 16, the Eb/N0 degradation for BER=10-4 with MMSE-CE from the ideal CE case is as small as 0.9 dB (including an Eb/N0 loss of 0.28 dB due to the pilot insertion).

  • Evaluation of Ergodic Capacity Taking into Account of Area Coverage in a Multilink MIMO Cellular Network for Supporting Guaranteed QoS

    Akiyo YOSHIMOTO  Takeshi HATTORI  

     
    PAPER

      Vol:
    E90-A No:7
      Page(s):
    1292-1299

    Multilink MIMO technique is a promising technology for cellular networks with a guaranteed quality-of-service. It will provide high capacity and wide coverage. We evaluated the downlink performance of the multilink MIMO system from the perspective of quality-of-service. The presence of Rayleigh fading, shadowing, and path loss was assumed. To evaluate the proposed system, we developed a performance measure for MIMO cellular system. The measure is ergodic capacity taking into account area coverage. Our numerical results show that the area coverage of proposed multilink MIMO system is greatly improved compared with that of the conventional singlelink MIMO system. Using the proposed measure, we also found that the multilink MIMO system could achieve high capacity with guaranteed QoS for a wide coverage.

  • Error Bound of Collision Probability Estimation in Non-saturated IEEE 802.11 WLANs

    Hyogon KIM  Jongwon YOON  Heejo LEE  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E90-B No:7
      Page(s):
    1884-1885

    We analytically prove that the error in the channel idle time-based collision probability estimation in face of non-saturated stations is bounded by 2/(CWmin+1) in the IEEE 802.11 wireless LANs (WLANs). This work explicitly quantifies the impact of non-saturation, and the result vindicates the use of the estimation technique in real-life IEEE 802.11 WLANs, in such applications as the acknowledgement-based link adaptation and the throughput optimization through contention window size adaptation.

  • Bit Error Rate Analysis of OFDM with Pilot-Assisted Channel Estimation

    Richol KU  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1725-1733

    The objective of this paper is to develop the theoretical foundation to the pilot-assisted channel estimation using delay-time domain windowing for the coherent detection of OFDM signals. The pilot-assisted channel estimation using delay-time domain windowing is jointly used with polynomial interpolation, decision feedback and Wiener filter. A closed-form BER expression is derived. The impacts of the delay-time domain window width, multipath channel decay factor, the maximum Doppler frequency are discussed. The theoretical analysis is confirmed by computer simulation.

  • A Tree-Based Channel Assignment and Sibling-Aware Routing Protocol for Multi-Channel Wireless Mesh Networks

    Bing ZHANG  Mehdad N. SHIRAZI  Kiyohiko HATTORI  

     
    PAPER

      Vol:
    E90-A No:7
      Page(s):
    1333-1343

    Wireless mesh networks (WMNs) are gaining significant momentum as a promising technology for the next-coming state-of-the-art wireless networking. Among many factors, the performance of WMNs would be largely affected by the properness of the deployed routing protocols and the efficient usage of wireless resources. Routing protocols are required to well capture WMNs' features while wireless channels should be used efficiently in order to accommodate high amount of traffics over the mesh backbone. Recently, a Tree-based Routing (TBR) protocol become a popular state-of-the-art proactive routing protocol and its tree-based broadcasting become an often used technique. Though TBR protocol is well-suited for WMNs' architecture and the skewed nature of traffic toward the root, the protocol in its current form faces issues which has to be addressed. Specifically, when some or all nodes are equipped with multiple radios, to reduce collision and co-channel interference, not only the parent-child relationship but also the sibling relationship need to be constructed by the TBR protocol in the multi-channel WMNs. In this paper, we propose a hybrid tree-based protocol for concurrent routing and channel assignment over WMNs. The protocol makes use of sibling links to mitigate the aforementioned shortcomings of TBR protocol. Moreover, in order to address high backbone traffic, the protocol integrates a receiver-based channel assignment scheme. The protocol efficiently deploys the parent-child topological relationships of nodes to enhance efficiency of broadcast transmissions over receiver-based multi-channel WMNs. Simulation results over NS-2 network simulator reveal that our proposed hybrid tree-based protocol achieves much higher performance than the utilization of the original receiver-based CA and TBR protocol.

  • Carrier Frequency Synchronization for OFDM Systems in the Presence of Phase Noise

    Yong-Hwa KIM  Jong-Ho LEE  Seong-Cheol KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1543-1546

    A carrier frequency synchronization scheme is proposed for orthogonal frequency-division multiplexing (OFDM) systems in the presence of phase noise (PHN). In the proposed scheme, carrier frequency synchronization is performed based on the maximum-likelihood (ML) algorithm using an OFDM preamble symbol. The proposed scheme is compared with conventional methods. Simulation results are presented to illustrate the effectiveness of the proposed scheme in the presence of PHN.

  • MIMO E-SDM Transmission Performance in an Actual Indoor Environment

    Hiroshi NISHIMOTO  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:6
      Page(s):
    1474-1486

    MIMO systems using a space division multiplexing (SDM) technique in which each transmit antenna sends an independent signal substream have been studied as one of the successful applications to increase data rates in wireless communications. The throughput of a MIMO channel can be maximized by using an eigenbeam-SDM (E-SDM) technique, and this paper investigates the practical performance of 22 and 44 MIMO E-SDM based on indoor measurements. The channel capacity and bit error rate obtained in various uniform linear array configurations are evaluated and are compared with the corresponding values for conventional SDM. Analysis results show that the bit error rate performance of E-SDM is better than that of SDM and that E-SDM gives better performance in line-of-sight (LOS) conditions than in non-LOS ones. They also show that the performance of E-SDM in LOS conditions depends very much on the array configuration.

  • Channel Estimation for OFDM Systems with Transparent Multi-Hop Relays

    Kyung-Soo WOO  Hyun-Il YOO  Yeong-Jun KIM  Kyu-In LEE  Chang-Hwan PARK  Heesoo LEE  Hyun-Kyu CHUNG  Yong-Soo CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1555-1558

    In this letter, the effect of a propagation delay resulting from the use of an OFDM system with a transparent mobile multi-hop relay (MMR) is initially analyzed. Then, a least square (LS) channel estimation technique for the OFDM system with throughput enhancement (TE) MMR or cooperative MMR is proposed. It is demonstrated by computer simulation that the proposed LS channel estimation technique for OFDM systems with transparent MMR is superior to the conventional technique in terms of mean square error (MSE) and bit error rate (BER).

941-960hit(1697hit)