The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel(1697hit)

1021-1040hit(1697hit)

  • Orthogonal Set of Huffman Sequences and Its Application to Suppressed-Interference Quasi-Synchronous CDMA System

    Yoshihiro TANADA  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2283-2291

    A Huffman sequence has a zero-sidelobe aperiodic autocorrelation function except at both shift ends. This paper presents orthogonal sets of the zero correlation zone (ZCZ) Huffman sequences and the application to a quasi-synchronous CDMA system with interferences suppressed. The sequences with low or large peak values are constructed on the basis of sequence spectra corresponding to multiple convolution of elementary sequences, and include the ZCZ sequences. The CDMA system is constructed from the ZCZ sequences, and suppresses intersymbol and interchannel interferences.

  • Decision Feedback Chip-Level Maximum Likelihood Detection for DS-CDMA in a Frequency-Selective Fading Channel

    Akihiro SAITO  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2564-2571

    In direct sequence code division multiple access (DS-CDMA), variable rate transmission can be realized by simply changing the spreading factor SF for the given chip rate. In a frequency-selective fading channel, the transmission performance can be improved by using rake combining. However, when a very low SF is used for achieving a high transmission rate, error floor is produced due to insufficient suppression of inter-chip interference (ICI). In this paper, decision feedback chip-level maximum likelihood detection (DF-CMLD) is proposed that can suppress the ICI. An upper-bound for the conditional bit error rate (BER) is theoretically derived for the given spreading sequence and path gains. The theoretical average BER performance is numerically evaluated by Monte-Carlo numerical computation using the derived conditional BER. The numerical computation results are confirmed by computer simulation of DS-CDMA signal transmission with DF-CMLD.

  • Channel Identification with Linear Time-Varying Channel Model for Pilot Channel Aided DS/CDMA Systems

    Jung Suk JOO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2652-2654

    A new channel identification algorithm using both pilot and traffic channels is proposed. It is based on the linear modelling for the fading channel and takes the form of a modified recursive least-squares (RLS) algorithm. Its existence is also analyzed. It will be shown through computer simulation that the proposed algorithm is robust to the variation of the channel fade rate in a mean square error (MSE) sense.

  • On the Sum-Rate Capacity of Multi-User Distributed Antenna System with Circular Antenna Layout

    Jiansong GAN  Shidong ZHOU  Jing WANG  Kyung PARK  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E89-B No:9
      Page(s):
    2612-2616

    In this letter, we investigate the sum-rate capacity of a power-controlled multi-user distributed antenna system (DAS) with antennas deployed symmetrically on a circle. The sum-rate capacity, when divided by user number, is proved to converge to an explicit expression as user number and antenna number go to infinity with a constant ratio. We further show how this theoretical result can be used to optimize antenna deployment. Simulation results are also provided to demonstrate the validity of our analysis and the applicability of the asymptotic results to a small-scale system.

  • Experimental Investigation of Undersampling for Adjacent Channel Interference Cancellation Scheme

    Anas Muhamad BOSTAMAM  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2548-2554

    In this paper an adjacent channel interference (ACI) cancellation scheme with undersampling for multi-channel reception is proposed and investigated. Low-IF receiver architecture is used in the multi-channel reception scheme. In this system, signal in the adjacent channel causes interference to the desired signal. The ACI cancellation scheme with analog filter bank has been proposed to mitigate the influence from the adjacent channel [10]. Undersampling technique is applied in this system in order to lower the required sampling frequency and power consumption. The effects of the adjacent channel to the undersampling technique in this scheme is examined and discussed.

  • Interference Resolving Technique for MB-OFDM Systems with UWB Channels

    Seung Young PARK  Yeonwoo LEE  Gadi SHOR  Yong Suk KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2237-2240

    In this letter, we propose a symbol repetition technique combined with parallel channel encoding for multiband orthogonal frequency division multiplexing systems with ultra wideband channels. It can resolve timing asynchronous cochannel interference from another simultaneously operating piconet. Our simulation results demonstrate that the proposed scheme can effectively reduce the effect of the interference.

  • A Pre-FFT OFDM Adaptive Array Antenna with Eigenvector Combining Open Access

    Shinsuke HARA  Quoc Tuan TRAN  Yunjian JIA  Montree BUDSABATHON  Yoshitaka HARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2180-2188

    This paper proposes a novel pre-FFT type OFDM adaptive array antenna called "Eigenvector Combining." The eigenvector combining array antenna is a realization of a post-FFT type OFDM adaptive array antenna through a pre-FFT signal processing, so it can achieve excellent performance with less computational complexity and shorter training symbols. Numerical results demonstrate that the proposed eigenvector combining array antenna shows excellent bit error rate performance close to the lower bound just with 2 OFDM symbol-long training symbols.

  • Blocking Probability of a DS-CDMA Multi-Hop Virtual Cellular Network

    Lalla Soundous EL ALAMI  Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1875-1883

    A wireless multi-hop virtual cellular network (VCN) was recently proposed to avoid the large peak transmit power, resulting from the high transmission rates expected for future mobile communication systems. In VCN, calls hop through several links to reach the central port, which is the gateway to the network. With the use of a routing algorithm based on the total uplink transmit power minimization criterion, the total transmit power of all the multi-hop links between the mobile terminal and the central port can be significantly reduced, in comparison with the present (single-hop) cellular network. In this paper, an "on-demand" channel assignment strategy, using the channel segregation dynamic channel allocation (CS-DCA) algorithm, is proposed for multi-hop DS-CDMA VCN. Computer simulation is conducted to evaluate the blocking probability performance and make a comparison between the VCN and the present cellular network.

  • Accurate Channel Estimation Method for Frequency Domain Equalization on cdma2000 High Rate Packet Data System

    Noriaki MIYAZAKI  Toshinori SUZUKI  Shuichi MATSUMOTO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E89-A No:7
      Page(s):
    2063-2071

    In order to improve the forward link capacity of cdma2000 HRPD (High Rate Packet Data) or CDMA2000 1xEV-DO, it is significant to overcome multi-path interference. This paper focuses on FDE (Frequency Domain Equalization) with MMSE (Minimum Mean Square Error) criterion. On top of that, backward compatibility with HRPD should be maintained, in other words common channels such as the pilot channel should not be changed. Thus, the PN (Pseudo Noise) spread pilot block without CP (Cyclic Prefix) signals has to be dealt with for FDE. However, this will cause the conventional channel estimation accuracy to deteriorate. In order to improve the estimation accuracy of the conventional method, this paper presents a MRC (Maximal Ratio Combining) spectrum estimator, IPI (Inter-Path Interference) canceller, and path searcher. The results obtained from computer simulations reveal that the proposed method can improve the PER (Packet Error Rate) performance significantly. If compared with Rake combiner and TDE (Time Domain Equalization) with NLMS (Normalized Least Mean Square) scheme, the maximum data rates at a fixed PER of 1% can be increased by 5 to 8 times and 1.25 to 2.67 times, respectively.

  • Iterative QRM-MLD with Pilot-Assisted Decision Directed Channel Estimation for OFDM MIMO Multiplexing

    Koichi ADACHI  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1892-1902

    Multiple-input multiple-output (MIMO) multiplexing has recently been attracting considerable attention for increasing the transmission rate in a limited bandwidth. In MIMO multiplexing, the signals transmitted simultaneously from different transmit antennas must be separated and detected at a receiver. Maximum likelihood detection with QR-decomposition and M-algorithm (QRM-MLD) can achieve good performance while keeping computational complexity low. However, when the number of surviving symbol replica candidates in the M-algorithm is set to be small, the performance of QRM-MLD degrades compared to that of MLD because of wrong selection of surviving symbol replica candidates. Furthermore, when channel estimation is inaccurate, accurate signal ranking and QR-decomposition cannot be carried out. In this paper, we propose an iterative QRM-MLD with decision directed channel estimation to improve the packet error rate (PER) performance. In the proposed QRM-MLD, decision feedback data symbols are also used for channel estimation in addition to pilot symbols in order to improve the channel estimation accuracy. Signal detection/channel estimation are then carried out in an iterative fashion. Computer simulation results show that the proposed QRM-MLD reduces the required average received Eb/N0 for PER of 10-2 by about 1.2 dB compared to the conventional method using orthogonal pilot symbols only.

  • Estimation of OFDM Integer Frequency Offset over Rapidly Time-Varying Channels

    Young-Hwan YOU  Sung-Jin KANG  Dae-Ki HONG  Jang-Yeon LEE  Jin-Woong CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2099-2101

    In this letter, we present a simple way of estimating the integer frequency offset of orthogonal frequency division multiplexing (OFDM) system over a rapidly time-varying channel. By utilizing the channel responses of neighboring subcarriers within one pilot symbol, the frequency offset estimator is derived. We show by simulation that the proposed estimator can accurately estimate the integer frequency offset with reduced computational burden.

  • Analysis of Delay Characteristics in MPsLS Forwarding Scheme

    Jun YANG  Yasushi HIBINO  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:6
      Page(s):
    1738-1746

    The delay characteristics of the MPsLS, a data forwarding scheme used for a core area of the integrated data service network, are discussed and analyzed. MPsLS has the capability of guaranteeing QoS on the per-flow level for time-sensitive applications and simultaneously maintaining the high utilization of network resources. In the MPsLS core area, the forwarding process is implemented with a fine-grain slot synchronization model, and at the ingress edge nodes, the forwarding process is carried with a coarse-grain frame synchronization model. The delay analyses are done according to three service models: the exact synchronization model, the less strict synchronization model for the appointed channels, and an asynchronous model for the filler channels. The authors give estimation equations of mean delay between edge-to-edge nodes in an MPsLS network, and introduce an effective method to determine the reserved bandwidth for given application flows based on numerical calculations from those theory analysis and simple simulation results.

  • Performance of a Base Station Feedback-Type Adaptive Array Antenna with Limited Number of Feedback Bits

    Jeongkeun CHOI  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1793-1798

    Feedback-type Adaptive Array Antenna has been proposed for frequency division duplexed (FDD) system, where the mobile station (MS) measures channel characteristics and sends those back to the base station (BS). Using a higher number of feed-back bits provides better performance. However it wastes channel capacity of the up-link. On the other hand, error in feedback signals transmission causes significant performance degradation. To solve these problems, this paper proposes a method that the MS sends back the difference between the optimum weights calculated at the MS and weights which are currently used at the BS. Bit error rate performance of the system is shown under a realistic propagation condition.

  • Low-Complexity Time Domain Equalization of OFDM in Highly Time-Selective Channels

    Kapseok CHANG  Youngnam HAN  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1710-1712

    We observe the inter-carrier interference (ICI) caused by channel variation of the fading in time domain in orthogonal frequency division multiplexing (OFDM) systems. This observation allows us to propose simple two-stage equalizer to minimize the ICI. Simulation results show that the bit error rate (BER) performance of the proposed equalizer with much reduced complexity is comparable with that of the classical frequency domain linear minimum mean squared error (MMSE) equalizer.

  • Performance Analysis of Dynamic Channel Allocation Based on Reuse Partitioning in Multi-Cell OFDMA Uplink Systems

    Eunsung OH  Myeon-gyun CHO  Seungyoup HAN  Choongchae WOO  Daesik HONG  

     
    PAPER

      Vol:
    E89-A No:6
      Page(s):
    1566-1570

    Our investigation is presented into analysis of the co-channel interference (CCI) statistic in orthogonal frequency-division multiple access (OFDMA) uplink systems. The derived statistic is then used to analyze the performance of reuse partitioning (RP)-based dynamic channel allocation (DCA). Analysis and simulation results show that the performance of DCA in multi-cell environments is noticeably dependent on the CCI. Finally, the results of the analysis yield the optimum RP area for achieving the maximum spectral efficiency.

  • Iterative Sequential OFDM Symbol Estimation Algorithm over Time-Frequency-Selective Fading Channels

    Hoojin LEE  Joonhyuk KANG  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1922-1925

    Time-frequency-selective, i.e., time-variant multipath, fading in orthogonal frequency division multiplexing (OFDM) systems destroys subcarrier orthogonality, resulting in intercarrier interference (ICI). In general, the previously proposed estimation schemes to resolve this problem are only applicable to slowly time-variant channels or suffer from high complexity due to large-sized matrix inversion. In this letter, we propose and develop efficient symbol estimation schemes, called the iterative sequential neighbor search (ISNS) algorithm and the simplified iterative sequential neighbor search (S-ISNS) algorithm. These algorithms achieve enhanced performances with low complexities, compared to the existing estimation methods.

  • Antenna Selection Using Genetic Algorithm for MIMO Systems

    Qianjing GUO  Suk Chan KIM  Dong Chan PARK  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1773-1775

    Recent work has shown that the usage of multiple antennas at the transmitter and receiver in a flat fading environment results in a linear increase in channel capacity. But increasing the number of antennas induces the higher hardware costs and computational burden. To overcome those problems, it is effective to select antennas appropriately among all available ones. In this paper, a new antenna selection method is proposed. The transmit antennas are selected so as to maximize the channel capacity using the genetic algorithm (GA) which is the one of the general random search algorithm. The results show that the proposed GA achieves almost the same performance as the optimal selection method with less computational amount.

  • Distributed Channel Access for QoS Control in Link Adaptive Wireless LANs

    Ryoichi SHINKUMA  Junpei MAEDA  Tatsuro TAKAHASHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E89-B No:6
      Page(s):
    1846-1855

    In wireless local area networks (WLANs), the necessity of quality-of-service (QoS) control for uplink flows is increasing because interactive applications are becoming more popular. Fairness between flows transmitted by stations with different physical transmission rates must be ensured in QoS control for link-adaptive WLANs, which are widely used nowadays. We propose a novel distributed access scheme called QC-DCA to satisfy these requirements. QC-DCA adaptively controls the parameters of carrier sense multiple access with collision avoidance (CSMA/CA). QC-DCA has two QoS control functions: guarantee and classification. QC-DCA guarantees target throughputs and packet delays by quickly adjusting CSMA/CA parameters. In QoS classification, the difference of throughputs and packet delays between different QoS classes is maintained. These two functions allow QC-DCA to suppress the unfairness caused by differences of transmission rates in the physical layer. We evaluated the throughput and delay performances of our scheme using computer simulations. The results show the viability of our scheme.

  • Defeating Simple Power Analysis on Koblitz Curves

    Camille VUILLAUME  Katsuyuki OKEYA  Tsuyoshi TAKAGI  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1362-1369

    Koblitz curves belong to a special class of binary curves on which the scalar multiplication can be computed very efficiently. For this reason, they are suitable candidates for implementations on low-end processors. However, such devices are often vulnerable to side channel attacks. In this paper, we propose a new countermeasure against side channel attacks on Koblitz curves, which utilizes a fixed-pattern recoding to defeat simple power analysis. We show that in practical cases, the recoding can be performed from left to right, and can be easily stored or even randomly generated.

  • Transformation of a Parity-Check Matrix for a Message-Passing Algorithm over the BEC

    Naoto KOBAYASHI  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1299-1306

    We propose transformation of a parity-check matrix of any low-density parity-check code. A code with transformed parity-check matrix is an equivalent of a code with the original parity-check matrix. For the binary erasure channel, performance of a message-passing algorithm with a transformed parity-check matrix is better than that with the original matrix.

1021-1040hit(1697hit)