The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] class(608hit)

161-180hit(608hit)

  • Learning State Recognition in Self-Paced E-Learning

    Siyang YU  Kazuaki KONDO  Yuichi NAKAMURA  Takayuki NAKAJIMA  Masatake DANTSUJI  

     
    PAPER-Educational Technology

      Pubricized:
    2016/11/21
      Vol:
    E100-D No:2
      Page(s):
    340-349

    Self-paced e-learning provides much more freedom in time and locale than traditional education as well as diversity of learning contents and learning media and tools. However, its limitations must not be ignored. Lack of information on learners' states is a serious issue that can lead to severe problems, such as low learning efficiency, motivation loss, and even dropping out of e-learning. We have designed a novel e-learning support system that can visually observe learners' non-verbal behaviors and estimate their learning states and that can be easily integrated into practical e-learning environments. Three pairs of internal states closely related to learning performance, concentration-distraction, difficulty-ease, and interest-boredom, were selected as targets of recognition. In addition, we investigated the practical problem of estimating the learning states of a new learner whose characteristics are not known in advance. Experimental results show the potential of our system.

  • Vehicle Classification under Different Feature Sets with a Single Anisotropic Magnetoresistive Sensor

    Chang XU  Yingguan WANG  Yunlong ZHAN  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    440-447

    This paper focus on the development of a single portable roadside magnetic sensor for vehicle classification. The magnetic sensor is a kind of anisotropic magnetic device that do not require to be embedded in the roadway-the device is placed next to the roadway and measure traffic in the immediately adjacent lane. A novel feature extraction and comparison approach is presented for vehicle classification with a single magnetic sensor, which is based on four different feature sets extracted from the detected magnetic signal. Furthermore, vehicle classification has been achieved with three common classification algorithms, including support vector machine, k-nearest neighbors and back-propagation neural network. Experimental results have demonstrated that the Peak-Peak feature set with back-propagation neural network approach performs much better than other approaches. Besides, the normalization technology has been proved it does work.

  • A Ranking Approach to Source Retrieval of Plagiarism Detection

    Leilei KONG  Zhimao LU  Zhongyuan HAN  Haoliang QI  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2016/09/29
      Vol:
    E100-D No:1
      Page(s):
    203-205

    This paper addresses the issue of source retrieval in plagiarism detection. The task of source retrieval is retrieving all plagiarized sources of a suspicious document from a source document corpus whilst minimizing retrieval costs. The classification-based methods achieved the best performance in the current researches of source retrieval. This paper points out that it is more important to cast the problem as ranking and employ learning to rank methods to perform source retrieval. Specially, it employs RankBoost and Ranking SVM to obtain the candidate plagiarism source documents. Experimental results on the dataset of PAN@CLEF 2013 Source Retrieval show that the ranking based methods significantly outperforms the baseline methods based on classification. We argue that considering the source retrieval as a ranking problem is better than a classification problem.

  • A Deep Neural Network Based Quasi-Linear Kernel for Support Vector Machines

    Weite LI  Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E99-A No:12
      Page(s):
    2558-2565

    This paper proposes a deep quasi-linear kernel for support vector machines (SVMs). The deep quasi-linear kernel can be constructed by using a pre-trained deep neural network. To realize this goal, a multilayer gated bilinear classifier is first designed to mimic the functionality of the pre-trained deep neural network, by generating the gate control signals using the deep neural network. Then, a deep quasi-linear kernel is derived by applying an SVM formulation to the multilayer gated bilinear classifier. In this way, we are able to further implicitly optimize the parameters of the multilayer gated bilinear classifier, which are a set of duplicate but independent parameters of the pre-trained deep neural network, by using an SVM optimization. Experimental results on different data sets show that SVMs with the proposed deep quasi-linear kernel have an ability to take advantage of the pre-trained deep neural networks and outperform SVMs with RBF kernels.

  • An Improved Feature Selection Algorithm for Ordinal Classification

    Weiwei PAN  Qinhua HU  

     
    PAPER-Machine Learning

      Vol:
    E99-A No:12
      Page(s):
    2266-2274

    Ordinal classification is a class of special tasks in machine learning and pattern recognition. As to ordinal classification, there is an ordinal structure among different decision values. The monotonicity constraint between features and decision should be taken into account as the fundamental assumption. However, in real-world applications, this assumption may be not true. Only some candidate features, instead of all, are monotonic with decision. So the existing feature selection algorithms which are designed for nominal classification or monotonic classification are not suitable for ordinal classification. In this paper, we propose a feature selection algorithm for ordinal classification based on considering the non-monotonic and monotonic features separately. We first introduce an assumption of hybrid monotonic classification consistency and define a feature evaluation function to calculate the relevance between the features and decision for ordinal classification. Then, we combine the reported measure and genetic algorithm (GA) to search the optimal feature subset. A collection of numerical experiments are implemented to show that the proposed approach can effectively reduce the feature size and improve the classification performance.

  • Classifying Insects from SEM Images Based on Optimal Classifier Selection and D-S Evidence Theory

    Takahiro OGAWA  Akihiro TAKAHASHI  Miki HASEYAMA  

     
    PAPER-Image

      Vol:
    E99-A No:11
      Page(s):
    1971-1980

    In this paper, an insect classification method using scanning electron microphotographs is presented. Images taken by a scanning electron microscope (SEM) have a unique problem for classification in that visual features differ from each other by magnifications. Therefore, direct use of conventional methods results in inaccurate classification results. In order to successfully classify these images, the proposed method generates an optimal training dataset for constructing a classifier for each magnification. Then our method classifies images using the classifiers constructed by the optimal training dataset. In addition, several images are generally taken by an SEM with different magnifications from the same insect. Therefore, more accurate classification can be expected by integrating the results from the same insect based on Dempster-Shafer evidence theory. In this way, accurate insect classification can be realized by our method. At the end of this paper, we show experimental results to confirm the effectiveness of the proposed method.

  • RBM-LBP: Joint Distribution of Multiple Local Binary Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/08/19
      Vol:
    E99-D No:11
      Page(s):
    2828-2831

    In this letter, we propose a novel framework to estimate the joint distribution of multiple Local Binary Patterns (LBPs). Multiple LBPs extracted from the same central pixel are first encoded using handcrafted encoding schemes to achieve rotation invariance, and the outputs are further encoded through a pre-trained Restricted Boltzmann Machine (RBM) to reduce the dimension of features. RBM has been successfully used as binary feature detectors and the binary-valued units of RBM seamlessly adapt to LBP. The proposed feature is called RBM-LBP. Experiments on the CUReT and Outex databases show that RBM-LBP is superior to conventional handcrafted encodings and more powerful in estimating the joint distribution of multiple LBPs.

  • Improved End-to-End Speech Recognition Using Adaptive Per-Dimensional Learning Rate Methods

    Xuyang WANG  Pengyuan ZHANG  Qingwei ZHAO  Jielin PAN  Yonghong YAN  

     
    LETTER-Acoustic modeling

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2550-2553

    The introduction of deep neural networks (DNNs) leads to a significant improvement of the automatic speech recognition (ASR) performance. However, the whole ASR system remains sophisticated due to the dependent on the hidden Markov model (HMM). Recently, a new end-to-end ASR framework, which utilizes recurrent neural networks (RNNs) to directly model context-independent targets with connectionist temporal classification (CTC) objective function, is proposed and achieves comparable results with the hybrid HMM/DNN system. In this paper, we investigate per-dimensional learning rate methods, ADAGRAD and ADADELTA included, to improve the recognition of the end-to-end system, based on the fact that the blank symbol used in CTC technique dominates the output and these methods give frequent features small learning rates. Experiment results show that more than 4% relative reduction of word error rate (WER) as well as 5% absolute improvement of label accuracy on the training set are achieved when using ADADELTA, and fewer epochs of training are needed.

  • Short Text Classification Based on Distributional Representations of Words

    Chenglong MA  Qingwei ZHAO  Jielin PAN  Yonghong YAN  

     
    LETTER-Text classification

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2562-2565

    Short texts usually encounter the problem of data sparseness, as they do not provide sufficient term co-occurrence information. In this paper, we show how to mitigate the problem in short text classification through word embeddings. We assume that a short text document is a specific sample of one distribution in a Gaussian-Bayesian framework. Furthermore, a fast clustering algorithm is utilized to expand and enrich the context of short text in embedding space. This approach is compared with those based on the classical bag-of-words approaches and neural network based methods. Experimental results validate the effectiveness of the proposed method.

  • Superclass Extraction Problem of Workflow Nets and a Solution Procedure Based on Process Mining Technique

    Shingo YAMAGUCHI  

     
    PAPER-Mathematical Systems Science

      Vol:
    E99-A No:9
      Page(s):
    1700-1707

    An organization may have two or more similar workflows as a result of workflow evolutions or mergers and acquisitions. We should grasp the common behavior of those workflows to consolidate the management of them and/or to do business process reengineering. Workflows can be modeled as a particular class of Petri nets, called workflow nets. The common behavior of two or more workflow nets can be represented as a superclass under the behavioral inheritance of those workflow nets. In this paper, we tackled a problem of extracting a superclass from two workflow nets, named Superclass Extraction problem. We first gave a definition of the problem. Next we proposed a procedure to solve the problem on the basis of process mining technique. Then we gave an application of the proposed procedure.

  • Vehicle Detection Using Local Size-Specific Classifiers

    SeungJong NOH  Moongu JEON  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/06/17
      Vol:
    E99-D No:9
      Page(s):
    2351-2359

    As the number of surveillance cameras keeps increasing, the demand for automated traffic-monitoring systems is growing. In this paper, we propose a practical vehicle detection method for such systems. In the last decade, vehicle detection mainly has been performed by employing an image scan strategy based on sliding windows whereby a pre-trained appearance model is applied to all image areas. In this approach, because the appearance models are built from vehicle sample images, the normalization of the scales and aspect ratios of samples can significantly influence the performance of vehicle detection. Thus, to successfully apply sliding window schemes to detection, it is crucial to select the normalization sizes very carefully in a wise manner. To address this, we present a novel vehicle detection technique. In contrast to conventional methods that determine the normalization sizes without considering given scene conditions, our technique first learns local region-specific size models based on scene-contextual clues, and then utilizes the obtained size models to normalize samples to construct more elaborate appearance models, namely local size-specific classifiers (LSCs). LSCs can provide advantages in terms of both accuracy and operational speed because they ignore unnecessary information on vehicles that are observable in faraway areas from each sliding window position. We conduct experiments on real highway traffic videos, and demonstrate that the proposed method achieves a 16% increased detection accuracy with at least 3 times faster operational speed compared with the state-of-the-art technique.

  • Multiple k-Nearest Neighbor Classifier and Its Application to Tissue Characterization of Coronary Plaque

    Eiji UCHINO  Ryosuke KUBOTA  Takanori KOGA  Hideaki MISAWA  Noriaki SUETAKE  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/04/15
      Vol:
    E99-D No:7
      Page(s):
    1920-1927

    In this paper we propose a novel classification method for the multiple k-nearest neighbor (MkNN) classifier and show its practical application to medical image processing. The proposed method performs fine classification when a pair of the spatial coordinate of the observation data in the observation space and its corresponding feature vector in the feature space is provided. The proposed MkNN classifier uses the continuity of the distribution of features of the same class not only in the feature space but also in the observation space. In order to validate the performance of the present method, it is applied to the tissue characterization problem of coronary plaque. The quantitative and qualitative validity of the proposed MkNN classifier have been confirmed by actual experiments.

  • Uplink Blocking Probabilities in Priority-Based Cellular CDMA Networks with Finite Source Population

    Vassilios G. VASSILAKIS  Ioannis D. MOSCHOLIOS  Michael D. LOGOTHETIS  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1302-1309

    Fast proliferation of mobile Internet and high-demand mobile applications necessitates the introduction of different priority classes in next-generation cellular networks. This is especially crucial for efficient use of radio resources in the heterogeneous and virtualized network environments. Despite the fact that many analytical tools have been proposed for capacity and radio resource modelling in cellular networks, only a few of them explicitly incorporate priorities among services. We propose a novel analytical model to analyse the performance of a priority-based cellular CDMA system with finite source population. When the cell load is above a certain level, low-priority calls may be blocked to preserve the quality of service of high-priority calls. The proposed model leads to an efficient closed-form solution that enables fast and very accurate calculation of resource occupancy of the CDMA system and call blocking probabilities, for different services and many priority classes. To achieve them, the system is modelled as a continuous-time Markov chain. We evaluate the accuracy of the proposed analytical model by means of computer simulations and find that the introduced approximation errors are negligible.

  • Efficient Two-Step Middle-Level Part Feature Extraction for Fine-Grained Visual Categorization

    Hideki NAKAYAMA  Tomoya TSUDA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/23
      Vol:
    E99-D No:6
      Page(s):
    1626-1634

    Fine-grained visual categorization (FGVC) has drawn increasing attention as an emerging research field in recent years. In contrast to generic-domain visual recognition, FGVC is characterized by high intra-class and subtle inter-class variations. To distinguish conceptually and visually similar categories, highly discriminative visual features must be extracted. Moreover, FGVC has highly specialized and task-specific nature. It is not always easy to obtain a sufficiently large-scale training dataset. Therefore, the key to success in practical FGVC systems is to efficiently exploit discriminative features from a limited number of training examples. In this paper, we propose an efficient two-step dimensionality compression method to derive compact middle-level part-based features. To do this, we compare both space-first and feature-first convolution schemes and investigate their effectiveness. Our approach is based on simple linear algebra and analytic solutions, and is highly scalable compared with the current one-vs-one or one-vs-all approach, making it possible to quickly train middle-level features from a number of pairwise part regions. We experimentally show the effectiveness of our method using the standard Caltech-Birds and Stanford-Cars datasets.

  • LLC Revisit: Scene Classification with k-Farthest Neighbours

    Katsuyuki TANAKA  Tetsuya TAKIGUCHI  Yasuo ARIKI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/08
      Vol:
    E99-D No:5
      Page(s):
    1375-1383

    This paper introduces a simple but effective way to boost the performance of scene classification through a novel approach to the LLC coding process. In our proposed method, a local descriptor is encoded not only with k-nearest visual words but also with k-farthest visual words to produce more discriminative code. Since the proposed method is a simple modification of the image classification model, it can be easily integrated into various existing BoF models proposed in various areas, such as coding, pooling, to boost their scene classification performance. The results of experiments conducted with three scene datasets: 15-Scenes, MIT-Indoor67, and Sun367 show that adding k-farthest visual words better enhances scene classification performance than increasing the number of k-nearest visual words.

  • WHOSA: Network Flow Classification Based on Windowed Higher-Order Statistical Analysis

    Mingda WANG  Gaolei FEI  Guangmin HU  

     
    PAPER

      Vol:
    E99-B No:5
      Page(s):
    1024-1031

    Flow classification is of great significance for network management. Machine-learning-based flow classification is widely used nowadays, but features which depict the non-Gaussian characteristics of network flows are still absent. In this paper, we propose the Windowed Higher-order Statistical Analysis (WHOSA) for machine-learning-based flow classification. In our methodology, a network flow is modeled as three different time series: the flow rate sequence, the packet length sequence and the inter-arrival time sequence. For each sequence, both the higher-order moments and the largest singular values of the Bispectrum are computed as features. Some lower-order statistics are also computed from the distribution to build up the feature set for contrast, and C4.5 decision tree is chosen as the classifier. The results of the experiment reveals the capability of WHOSA in flow classification. Besides, when the classifier gets fully learned, the WHOSA feature set exhibit stronger discriminative power than the lower-order statistical feature set does.

  • Reflection and Rotation Invariant Uniform Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/05
      Vol:
    E99-D No:5
      Page(s):
    1400-1403

    In this letter, we propose a novel texture descriptor that takes advantage of an anisotropic neighborhood. A brand new encoding scheme called Reflection and Rotation Invariant Uniform Patterns (rriu2) is proposed to explore local structures of textures. The proposed descriptor is called Oriented Local Binary Patterns (OLBP). OLBP may be incorporated into other varieties of Local Binary Patterns (LBP) to obtain more powerful texture descriptors. Experimental results on CUReT and Outex databases show that OLBP not only significantly outperforms LBP, but also demonstrates great robustness to rotation and illuminant changes.

  • Character-Position-Free On-Line Handwritten Japanese Text Recognition by Two Segmentation Methods

    Jianjuan LIANG  Bilan ZHU  Taro KUMAGAI  Masaki NAKAGAWA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/01/06
      Vol:
    E99-D No:4
      Page(s):
    1172-1181

    The paper presents a recognition method of character-position-free on-line handwritten Japanese text patterns to allow a user to overlay characters freely without confirming previously written characters. To develop this method, we first collected text patterns written without wrist or elbow support and without visual feedback and then prepared large sets of character-position-free handwritten Japanese text patterns artificially from normally handwritten text patterns. The proposed method sets each off-stroke between real strokes as undecided and evaluates the segmentation probability by SVM model. Then, the optimal segmentation-recognition path can be effectively found by Viterbi search in the candidate lattice, combining the scores of character recognition, geometric features, linguistic context, as well as the segmentation scores by SVM classification. We test this method on variously overlaid sample patterns, as well as on the above-mentioned collected handwritten patterns, and verify that its recognition rates match those of the latest recognizer for normally handwritten horizontal Japanese text with no serious speed restriction in practical applications.

  • Variation of SCM/NAND Flash Hybrid SSD Performance, Reliability and Cost by Using Different SSD Configurations and Error Correction Strengths

    Hirofumi TAKISHITA  Shuhei TANAKAMARU  Sheyang NING  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E99-C No:4
      Page(s):
    444-451

    Storage-Class Memory (SCM) and NAND flash hybrid Solid-State Drive (SSD) has advantages of high performance and low power consumption compared with NAND flash only SSD. In this paper, first, three SSD configurations are investigated. Three different SCMs are used with 0.1 µs, 1 µs and 10 µs read/write latencies, respectively, and the required SCM/NAND flash capacity ratios are analyzed to maintain the same SSD performance. Next, by using the three SSD configurations, the variation of SSD reliability, performance and cost are analyzed by changing error correction strengths. The SSD reliability of acceptable SCM and NAND flash Bit Error Rates (BERs) is limited by achieving specified SSD performance with error correction, and/or limited by SCM and NAND flash parity size and SSD cost. Lastly, the SSD replacement cost is also analyzed by considering the limitation of NAND flash write/erase cycles. The purpose of this paper is to provide a design guideline for obtaining high performance, highly reliable and cost-effective SCM/NAND hybrid structure SSD with ECC.

  • How to Combine Translation Probabilities and Question Expansion for Question Classification in cQA Services

    Kyoungman BAE  Youngjoong KO  

     
    LETTER

      Pubricized:
    2016/01/14
      Vol:
    E99-D No:4
      Page(s):
    1019-1022

    This paper claims to use a new question expansion method for question classification in cQA services. The input questions consist of only a question whereas training data do a pair of question and answer. Thus they cannot provide enough information for good classification in many cases. Since the answer is strongly associated with the input questions, we try to create a pseudo answer to expand each input question. Translation probabilities between questions and answers and a pseudo relevant feedback technique are used to generate the pseudo answer. As a result, we obtain the significant improved performances when two approaches are effectively combined.

161-180hit(608hit)