The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] class(608hit)

21-40hit(608hit)

  • Class-E Synchronous RF Rectifier: Circuit Formulation, Geodesic Trajectory, Time-Domain Simulation, and Prototype Experiment

    Ryoya HONDA  Minoru MIZUTANI  Masaya TAMURA  Takashi OHIRA  

     
    PAPER

      Pubricized:
    2023/05/10
      Vol:
    E106-C No:11
      Page(s):
    698-706

    This paper formulates a class-E synchronous RF rectifier from a new viewpoint. The key point is to introduce a matrix and convolute the DC terms into RF matrices. The explicit expression of input impedance is demonstrated in plane geometry. We find out their input impedance exhibits a geodesic arc in hyperbolic geometry under ZVS operation, where the theoretical RF-DC conversion efficiency results in 100%. We verify the developed theory both numerically (circuit simulation) and experimentally (6.78MHz, 100W). We confirm that the input impedance becomes a geodesic arc for a wide range of DC load resistance. The presented theory is quite elegant since it is based on a matrix-based formulation and plane-geometrical expression.

  • Brain Tumor Classification using Under-Sampled k-Space Data: A Deep Learning Approach

    Tania SULTANA  Sho KUROSAKI  Yutaka JITSUMATSU  Shigehide KUHARA  Jun'ichi TAKEUCHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/08/15
      Vol:
    E106-D No:11
      Page(s):
    1831-1841

    We assess how well the recently created MRI reconstruction technique, Multi-Resolution Convolutional Neural Network (MRCNN), performs in the core medical vision field (classification). The primary goal of MRCNN is to identify the best k-space undersampling patterns to accelerate the MRI. In this study, we use the Figshare brain tumor dataset for MRI classification with 3064 T1-weighted contrast-enhanced MRI (CE-MRI) over three categories: meningioma, glioma, and pituitary tumors. We apply MRCNN to the dataset, which is a method to reconstruct high-quality images from under-sampled k-space signals. Next, we employ the pre-trained VGG16 model, which is a Deep Neural Network (DNN) based image classifier to the MRCNN restored MRIs to classify the brain tumors. Our experiments showed that in the case of MRCNN restored data, the proposed brain tumor classifier achieved 92.79% classification accuracy for a 10% sampling rate, which is slightly higher than that of SRCNN, MoDL, and Zero-filling methods have 91.89%, 91.89%, and 90.98% respectively. Note that our classifier was trained using the dataset consisting of the images with full sampling and their labels, which can be regarded as a model of the usual human diagnostician. Hence our results would suggest MRCNN is useful for human diagnosis. In conclusion, MRCNN significantly enhances the accuracy of the brain tumor classification system based on the tumor location using under-sampled k-space signals.

  • A Quick Startup Low-Power Hybrid Crystal Oscillator for IoT Applications

    Masaya MIYAHARA  Zule XU  Takehito ISHII  Noritoshi KIMURA  

     
    PAPER

      Pubricized:
    2023/04/13
      Vol:
    E106-C No:10
      Page(s):
    521-528

    In this paper, we propose a hybrid crystal oscillator which achieves both quick startup and low steady-state power consumption. At startup, a large negative resistance is realized by configuring a Pierce oscillating circuit with a multi-stage inverter amplifier, resulting in high-speed startup. During steady-state oscillation, the oscillator is reconfigured as a class-C complementary Colpitts circuit for low power consumption and low phase noise. Prototype chips were fabricated in 65nm CMOS process technology. With Pierce-type configuration, the measured startup time and startup energy of the oscillator are reduced to 1/11 and 1/5, respectively, compared with the one without Pierce-type configuration. The power consumption during steady oscillation is 30 µW.

  • Computational Complexity of Allow Rule Ordering and Its Greedy Algorithm

    Takashi FUCHINO  Takashi HARADA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/03/20
      Vol:
    E106-A No:9
      Page(s):
    1111-1118

    Packet classification is used to determine the behavior of incoming packets in network devices according to defined rules. As it is achieved using a linear search on a classification rule list, a large number of rules will lead to longer communication latency. To solve this, the problem of finding the order of rules minimizing the latency has been studied. Misherghi et al. and Harada et al. have proposed a problem that relaxes to policy-based constraints. In this paper, we show that the Relaxed Optimal Rule Ordering (RORO) for the allowlist is NP-hard, and by reducing from this we show that RORO for the general rule list is NP-hard. We also propose a heuristic algorithm based on the greedy method for an allowlist. Furthermore, we demonstrate the effectiveness of our method using ClassBench, which is a benchmark for packet classification algorithms.

  • Surface Defect Image Classification of Lithium Battery Pole Piece Based on Deep Learning

    Weisheng MAO  Linsheng LI  Yifan TAO  Wenyi ZHOU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/06/12
      Vol:
    E106-D No:9
      Page(s):
    1546-1555

    Aiming at the problem of low classification accuracy of surface defects of lithium battery pole pieces by traditional classification methods, an image classification algorithm for surface defects of lithium battery pole piece based on deep learning is proposed in this paper. Firstly, Wavelet Threshold and Histogram Equalization are used to preprocess the detect image to weaken influence of noise in non-defect regions and enhance defect features. Secondly, a VGG-InceptionV2 network with better performance is proposed by adding InceptionV2 structure to the improved VGG network structure. Then the original data set is expanded by rotating, flipping and contrast adjustment, and the optimal value of the model hyperparameters is determined by experiments. Finally, the model in this paper is compared with VGG16 and GoogLeNet to realize the recognition of defect types. The results show that the accuracy rate of the model in this paper for the surface pole piece defects of lithium batteries is 98.75%, and the model parameters is only 1.7M, which has certain significance for the classification of lithium battery surface pole piece defects in industry.

  • An Integrated Convolutional Neural Network with a Fusion Attention Mechanism for Acoustic Scene Classification

    Pengxu JIANG  Yue XIE  Cairong ZOU  Li ZHAO  Qingyun WANG  

     
    LETTER-Engineering Acoustics

      Pubricized:
    2023/02/06
      Vol:
    E106-A No:8
      Page(s):
    1057-1061

    In human-computer interaction, acoustic scene classification (ASC) is one of the relevant research domains. In real life, the recorded audio may include a lot of noise and quiet clips, making it hard for earlier ASC-based research to isolate the crucial scene information in sound. Furthermore, scene information may be scattered across numerous audio frames; hence, selecting scene-related frames is crucial for ASC. In this context, an integrated convolutional neural network with a fusion attention mechanism (ICNN-FA) is proposed for ASC. Firstly, segmented mel-spectrograms as the input of ICNN can assist the model in learning the short-term time-frequency correlation information. Then, the designed ICNN model is employed to learn these segment-level features. In addition, the proposed global attention layer may gather global information by integrating these segment features. Finally, the developed fusion attention layer is utilized to fuse all segment-level features while the classifier classifies various situations. Experimental findings using ASC datasets from DCASE 2018 and 2019 indicate the efficacy of the suggested method.

  • Location First Non-Maximum Suppression for Uncovered Muck Truck Detection

    Yuxiang ZHANG  Dehua LIU  Chuanpeng SU  Juncheng LIU  

     
    PAPER-Image

      Pubricized:
    2022/12/13
      Vol:
    E106-A No:6
      Page(s):
    924-931

    Uncovered muck truck detection aims to detect the muck truck and distinguish whether it is covered or not by dust-proof net to trace the source of pollution. Unlike traditional detection problem, recalling all uncovered trucks is more important than accurate locating for pollution traceability. When two objects are very close in an image, the occluded object may not be recalled because the non-maximum suppression (NMS) algorithm can remove the overlapped proposal. To address this issue, we propose a Location First NMS method to match the ground truth boxes and predicted boxes by position rather than class identifier (ID) in the training stage. Firstly, a box matching method is introduced to re-assign the predicted box ID using the closest ground truth one, which can avoid object missing when the IoU of two proposals is greater than the threshold. Secondly, we design a loss function to adapt the proposed algorithm. Thirdly, a uncovered muck truck detection system is designed using the method in a real scene. Experiment results show the effectiveness of the proposed method.

  • A Novel Discriminative Dictionary Learning Method for Image Classification

    Wentao LYU  Di ZHOU  Chengqun WANG  Lu ZHANG  

     
    PAPER-Image

      Pubricized:
    2022/12/14
      Vol:
    E106-A No:6
      Page(s):
    932-937

    In this paper, we present a novel discriminative dictionary learning (DDL) method for image classification. The local structural relationship between samples is first built by the Laplacian eigenmaps (LE), and then integrated into the basic DDL frame to suppress inter-class ambiguity in the feature space. Moreover, in order to improve the discriminative ability of the dictionary, the category label information of training samples is formulated into the objective function of dictionary learning by considering the discriminative promotion term. Thus, the data points of original samples are transformed into a new feature space, in which the points from different categories are expected to be far apart. The test results based on the real dataset indicate the effectiveness of this method.

  • Implementation of Fully-Pipelined CNN Inference Accelerator on FPGA and HBM2 Platform

    Van-Cam NGUYEN  Yasuhiko NAKASHIMA  

     
    PAPER-Computer System

      Pubricized:
    2023/03/17
      Vol:
    E106-D No:6
      Page(s):
    1117-1129

    Many deep convolutional neural network (CNN) inference accelerators on the field-programmable gate array (FPGA) platform have been widely adopted due to their low power consumption and high performance. In this paper, we develop the following to improve performance and power efficiency. First, we use a high bandwidth memory (HBM) to expand the bandwidth of data transmission between the off-chip memory and the accelerator. Second, a fully-pipelined manner, which consists of pipelined inter-layer computation and a pipelined computation engine, is implemented to decrease idle time among layers. Third, a multi-core architecture with shared-dual buffers is designed to reduce off-chip memory access and maximize the throughput. We designed the proposed accelerator on the Xilinx Alveo U280 platform with in-depth Verilog HDL instead of high-level synthesis as the previous works and explored the VGG-16 model to verify the system during our experiment. With a similar accelerator architecture, the experimental results demonstrate that the memory bandwidth of HBM is 13.2× better than DDR4. Compared with other accelerators in terms of throughput, our accelerator is 1.9×/1.65×/11.9× better than FPGA+HBM2 based/low batch size (4) GPGPU/low batch size (4) CPU. Compared with the previous DDR+FPGA/DDR+GPGPU/DDR+CPU based accelerators in terms of power efficiency, our proposed system provides 1.4-1.7×/1.7-12.6×/6.6-37.1× improvement with the large-scale CNN model.

  • The Comparison of Attention Mechanisms with Different Embedding Modes for Performance Improvement of Fine-Grained Classification

    Wujian YE  Run TAN  Yijun LIU  Chin-Chen CHANG  

     
    PAPER-Core Methods

      Pubricized:
    2021/12/22
      Vol:
    E106-D No:5
      Page(s):
    590-600

    Fine-grained image classification is one of the key basic tasks of computer vision. The appearance of traditional deep convolutional neural network (DCNN) combined with attention mechanism can focus on partial and local features of fine-grained images, but it still lacks the consideration of the embedding mode of different attention modules in the network, leading to the unsatisfactory result of classification model. To solve the above problems, three different attention mechanisms are introduced into the DCNN network (like ResNet, VGGNet, etc.), including SE, CBAM and ECA modules, so that DCNN could better focus on the key local features of salient regions in the image. At the same time, we adopt three different embedding modes of attention modules, including serial, residual and parallel modes, to further improve the performance of the classification model. The experimental results show that the three attention modules combined with three different embedding modes can improve the performance of DCNN network effectively. Moreover, compared with SE and ECA, CBAM has stronger feature extraction capability. Among them, the parallelly embedded CBAM can make the local information paid attention to by DCNN richer and more accurate, and bring the optimal effect for DCNN, which is 1.98% and 1.57% higher than that of original VGG16 and Resnet34 in CUB-200-2011 dataset, respectively. The visualization analysis also indicates that the attention modules can be easily embedded into DCNN networks, especially in the parallel mode, with stronger generality and universality.

  • Effective Language Representations for Danmaku Comment Classification in Nicovideo

    Hiroyoshi NAGAO  Koshiro TAMURA  Marie KATSURAI  

     
    PAPER

      Pubricized:
    2023/01/16
      Vol:
    E106-D No:5
      Page(s):
    838-846

    Danmaku commenting has become popular for co-viewing on video-sharing platforms, such as Nicovideo. However, many irrelevant comments usually contaminate the quality of the information provided by videos. Such an information pollutant problem can be solved by a comment classifier trained with an abstention option, which detects comments whose video categories are unclear. To improve the performance of this classification task, this paper presents Nicovideo-specific language representations. Specifically, we used sentences from Nicopedia, a Japanese online encyclopedia of entities that possibly appear in Nicovideo contents, to pre-train a bidirectional encoder representations from Transformers (BERT) model. The resulting model named Nicopedia BERT is then fine-tuned such that it could determine whether a given comment falls into any of predefined categories. The experiments conducted on Nicovideo comment data demonstrated the effectiveness of Nicopedia BERT compared with existing BERT models pre-trained using Wikipedia or tweets. We also evaluated the performance of each model in an additional sentiment classification task, and the obtained results implied the applicability of Nicopedia BERT as a feature extractor of other social media text.

  • CAMRI Loss: Improving the Recall of a Specific Class without Sacrificing Accuracy

    Daiki NISHIYAMA  Kazuto FUKUCHI  Youhei AKIMOTO  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    523-537

    In real world applications of multiclass classification models, misclassification in an important class (e.g., stop sign) can be significantly more harmful than in other classes (e.g., no parking). Thus, it is crucial to improve the recall of an important class while maintaining overall accuracy. For this problem, we found that improving the separation of important classes relative to other classes in the feature space is effective. Existing methods that give a class-sensitive penalty for cross-entropy loss do not improve the separation. Moreover, the methods designed to improve separations between all classes are unsuitable for our purpose because they do not consider the important classes. To achieve the separation, we propose a loss function that explicitly gives loss for the feature space, called class-sensitive additive angular margin (CAMRI) loss. CAMRI loss is expected to reduce the variance of an important class due to the addition of a penalty to the angle between the important class features and the corresponding weight vectors in the feature space. In addition, concentrating the penalty on only the important class hardly sacrifices separating the other classes. Experiments on CIFAR-10, GTSRB, and AwA2 showed that CAMRI loss could improve the recall of a specific class without sacrificing accuracy. In particular, compared with GTSRB's second-worst class recall when trained with cross-entropy loss, CAMRI loss improved recall by 9%.

  • Asymptotic Evaluation of Classification in the Presence of Label Noise

    Goki YASUDA  Tota SUKO  Manabu KOBAYASHI  Toshiyasu MATSUSHIMA  

     
    PAPER-Learning

      Pubricized:
    2022/08/26
      Vol:
    E106-A No:3
      Page(s):
    422-430

    In a practical classification problem, there are cases where incorrect labels are included in training data due to label noise. We introduce a classification method in the presence of label noise that idealizes a classification method based on the expectation-maximization (EM) algorithm, and evaluate its performance theoretically. Its performance is asymptotically evaluated by assessing the risk function defined as the Kullback-Leibler divergence between predictive distribution and true distribution. The result of this performance evaluation enables a theoretical evaluation of the most successful performance that the EM-based classification method may achieve.

  • Heterogeneous Integration of Precise and Approximate Storage for Error-Tolerant Workloads

    Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2022/09/05
      Vol:
    E106-A No:3
      Page(s):
    491-503

    This study proposes a heterogeneous integration of precise and approximate storage in data center storage. The storage control engine allocates precise and error-tolerant applications to precise and approximate storage, respectively. The appropriate use of both precise and approximate storage is examined by applying a non-volatile memory capacity algorithm. To respond to the changes in application over time, the non-volatile memory capacity algorithm changes capacity of storage class memories (SCMs), namely the memory-type SCM (M-SCM) and storage-type SCM (S-SCM), in non-volatile memory resource. A three-dimensional triple-level cell (TLC) NAND flash is used as a large capacity memory. The results indicate that precise storage exhibits a high performance when the maximum storage cost is high. By contrast, with a low maximum storage cost, approximate storage exhibits high performance using a low bit cost approximate multiple-level cell (MLC) S-SCM.

  • Adversarial Example Detection Based on Improved GhostBusters

    Hyunghoon KIM  Jiwoo SHIN  Hyo Jin JO  

     
    LETTER

      Pubricized:
    2022/04/19
      Vol:
    E105-D No:11
      Page(s):
    1921-1922

    In various studies of attacks on autonomous vehicles (AVs), a phantom attack in which advanced driver assistance system (ADAS) misclassifies a fake object created by an adversary as a real object has been proposed. In this paper, we propose F-GhostBusters, which is an improved version of GhostBusters that detects phantom attacks. The proposed model uses a new feature, i.e, frequency of images. Experimental results show that F-GhostBusters not only improves the detection performance of GhostBusters but also can complement the accuracy against adversarial examples.

  • Multi-Targeted Poisoning Attack in Deep Neural Networks

    Hyun KWON  Sunghwan CHO  

     
    LETTER

      Pubricized:
    2022/08/09
      Vol:
    E105-D No:11
      Page(s):
    1916-1920

    Deep neural networks show good performance in image recognition, speech recognition, and pattern analysis. However, deep neural networks also have weaknesses, one of which is vulnerability to poisoning attacks. A poisoning attack reduces the accuracy of a model by training the model on malicious data. A number of studies have been conducted on such poisoning attacks. The existing type of poisoning attack causes misrecognition by one classifier. In certain situations, however, it is necessary for multiple models to misrecognize certain data as different specific classes. For example, if there are enemy autonomous vehicles A, B, and C, a poisoning attack could mislead A to turn to the left, B to stop, and C to turn to the right simply by using a traffic sign. In this paper, we propose a multi-targeted poisoning attack method that causes each of several models to misrecognize certain data as a different target class. This study used MNIST and CIFAR10 as datasets and Tensorflow as a machine learning library. The experimental results show that the proposed scheme has a 100% average attack success rate on MNIST and CIFAR10 when malicious data accounting for 5% of the training dataset have been used for training.

  • Toward Selective Membership Inference Attack against Deep Learning Model

    Hyun KWON  Yongchul KIM  

     
    LETTER

      Pubricized:
    2022/07/26
      Vol:
    E105-D No:11
      Page(s):
    1911-1915

    In this paper, we propose a selective membership inference attack method that determines whether certain data corresponding to a specific class are being used as training data for a machine learning model or not. By using the proposed method, membership or non-membership can be inferred by generating a decision model from the prediction of the inference models and training the confidence values for the data corresponding to the selected class. We used MNIST as an experimental dataset and Tensorflow as a machine learning library. Experimental results show that the proposed method has a 92.4% success rate with 5 inference models for data corresponding to a specific class.

  • Sample Selection Approach with Number of False Predictions for Learning with Noisy Labels

    Yuichiro NOMURA  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/07/21
      Vol:
    E105-D No:10
      Page(s):
    1759-1768

    In recent years, deep neural networks (DNNs) have made a significant impact on a variety of research fields and applications. One drawback of DNNs is that it requires a huge amount of dataset for training. Since it is very expensive to ask experts to label the data, many non-expert data collection methods such as web crawling have been proposed. However, dataset created by non-experts often contain corrupted labels, and DNNs trained on such dataset are unreliable. Since DNNs have an enormous number of parameters, it tends to overfit to noisy labels, resulting in poor generalization performance. This problem is called Learning with Noisy labels (LNL). Recent studies showed that DNNs are robust to the noisy labels in the early stage of learning before over-fitting to noisy labels because DNNs learn the simple patterns first. Therefore DNNs tend to output true labels for samples with noisy labels in the early stage of learning, and the number of false predictions for samples with noisy labels is higher than for samples with clean labels. Based on these observations, we propose a new sample selection approach for LNL using the number of false predictions. Our method periodically collects the records of false predictions during training, and select samples with a low number of false predictions from the recent records. Then our method iteratively performs sample selection and training a DNNs model using the updated dataset. Since the model is trained with more clean samples and records more accurate false predictions for sample selection, the generalization performance of the model gradually increases. We evaluated our method on two benchmark datasets, CIFAR-10 and CIFAR-100 with synthetically generated noisy labels, and the obtained results which are better than or comparative to the-state-of-the-art approaches.

  • Class-E Power Amplifier with Improved PAE Bandwidth Using Double CRLH TL Stub for Harmonic Tuning Open Access

    Shinichi TANAKA  Hirotaka ASAMI  Takahiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    441-448

    This paper presents a class-E power amplifier (PA) with a novel harmonic tuning circuit (HTC) based on composite right-/left-handed transmission lines (CRLH TLs). One of the issues of conventional harmonically tuned PAs is the limited PAE bandwidth. It is shown by simulation that class-E amplifiers have potential of maintaining high PAE over a wider frequency range than for example class-F amplifiers. To make full use of class-E amplifiers with the superior characteristics, an HTC using double CRLH TL stub structure is proposed. The HTC is not only compact but also enhances the inherently wide operation frequency range of class-E amplifier. A 2-GHz 6W GaN-HEMT class-E PA using the proposed HTC demonstrated a PAE bandwidth (≥65%) of 380MHz with maximum drain efficiency and PAE of 78.5% and 74.0%, respectively.

  • Lightweight and Compact Rectenna Array with 20W-Class Output at C-Band for Micro-Drone Wireless Charging

    Nobuyuki TAKABAYASHI  Bo YANG  Naoki SHINOHARA  Tomohiko MITANI  

     
    PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    509-518

    Drones have been attractive for many kinds of industries, but limited power supply from batteries has impeded drones from being operated for longer hours. Microwave power transmission (MPT) is one of the most prospective technologies to release them from the limitation. Since, among several types of drones, micro-drone has shorter available flight time, it is reasonable to provide micro-drone with wireless charging access with an MPT system. However, there is no suitable rectenna for micro-drone charging applications in preceding studies. In this paper, an MPT system for micro-drone was proposed at C-band where a lightweight and compact rectenna array with 20-W class output power was developed. Under illumination of a flat-top beam with 203 mW/cm2 of power density, a 16-element rectenna array was measured. The 16-element rectenna was formed with the aid of a honeycomb substrate for lightness and GaAs Schottky barrier diodes for high output. It was 37.5 g in weight and 146.4 mm by 146.4 mm in size. It output 27.0 W of dc power at 19.0 V at 5.8 GHz when radio frequency power of 280 W was generated by the injection-locked magnetron and 134 W was transmitted from the transmitting phased array. The power-to-weight ratio was 0.72W/g. The power conversion efficiency was 61.9%. These numbers outperformed the rectennas in the preceding studies and are suitable for an MPT system to micro-drone.

21-40hit(608hit)