The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] class(608hit)

121-140hit(608hit)

  • SOM-Based Vector Recognition with Pre-Grouping Functionality

    Yuto KUROSAKI  Masayoshi OHTA  Hidetaka ITO  Hiroomi HIKAWA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2018/03/20
      Vol:
    E101-D No:6
      Page(s):
    1657-1665

    This paper discusses the effect of pre-grouping on vector classification based on the self-organizing map (SOM). The SOM is an unsupervised learning neural network, and is used to form clusters of vectors using its topology preserving nature. The use of SOMs for practical applications, however, may pose difficulties in achieving high recognition accuracy. For example, in image recognition, the accuracy is degraded due to the variation of lighting conditions. This paper considers the effect of pre-grouping of feature vectors on such types of applications. The proposed pre-grouping functionality is also based on the SOM and introduced into a new parallel configuration of the previously proposed SOM-Hebb classifers. The overall system is implemented and applied to position identification from images obtained in indoor and outdoor settings. The system first performs the grouping of images according to the rough representation of the brightness profile of images, and then assigns each SOM-Hebb classifier in the parallel configuration to one of the groups. Recognition parameters of each classifier are tuned for the vectors belonging to its group. Comparison between the recognition systems with and without the grouping shows that the grouping can improve recognition accuracy.

  • Extreme Learning Machine with Superpixel-Guided Composite Kernels for SAR Image Classification

    Dongdong GUAN  Xiaoan TANG  Li WANG  Junda ZHANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1703-1706

    Synthetic aperture radar (SAR) image classification is a popular yet challenging research topic in the field of SAR image interpretation. This paper presents a new classification method based on extreme learning machine (ELM) and the superpixel-guided composite kernels (SGCK). By introducing the generalized likelihood ratio (GLR) similarity, a modified simple linear iterative clustering (SLIC) algorithm is firstly developed to generate superpixel for SAR image. Instead of using a fixed-size region, the shape-adaptive superpixel is used to exploit the spatial information, which is effective to classify the pixels in the detailed and near-edge regions. Following the framework of composite kernels, the SGCK is constructed base on the spatial information and backscatter intensity information. Finally, the SGCK is incorporated an ELM classifier. Experimental results on both simulated SAR image and real SAR image demonstrate that the proposed framework is superior to some traditional classification methods.

  • Linear Complexity of Quaternary Sequences over Z4 Based on Ding-Helleseth Generalized Cyclotomic Classes

    Xina ZHANG  Xiaoni DU  Chenhuang WU  

     
    LETTER-Information Theory

      Vol:
    E101-A No:5
      Page(s):
    867-871

    A family of quaternary sequences over Z4 is defined based on the Ding-Helleseth generalized cyclotomic classes modulo pq for two distinct odd primes p and q. The linear complexity is determined by computing the defining polynomial of the sequences, which is in fact connected with the discrete Fourier transform of the sequences. The results show that the sequences possess large linear complexity and are “good” sequences from the viewpoint of cryptography.

  • A Direct Localization Method of Multiple Distributed Sources Based on the Idea of Multiple Signal Classification

    Yanqing REN  Zhiyu LU  Daming WANG  Jian LIU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1246-1256

    The Localization of distributed sources has attracted significant interest recently. There mainly are two types of localization methods which are able to estimate distributed source positions: two-step methods and direct localization methods. Unfortunately, both fail to exploit the location information and so suffer a loss in localization accuracy. By utilizing the information not used in the above, a direct localization method of multiple distributed sources is proposed in this paper that offers improved location accuracy. We construct a direct localization model of multiple distributed sources and develop a direct localization estimator with the theory of multiple signal classification. The distributed source positions are estimated via a three-dimensional grid search. We also provide Cramer-Rao Bound, computational complexity analysis and Monte Carlo simulations. The simulations demonstrate that the proposed method outperforms the localization methods above in terms of accuracy and resolution.

  • A 11.3-µA Physical Activity Monitoring System Using Acceleration and Heart Rate

    Motofumi NAKANISHI  Shintaro IZUMI  Mio TSUKAHARA  Hiroshi KAWAGUCHI  Hiromitsu KIMURA  Kyoji MARUMOTO  Takaaki FUCHIKAMI  Yoshikazu FUJIMORI  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    233-242

    This paper presents an algorithm for a physical activity (PA) classification and metabolic equivalents (METs) monitoring and its System-on-a-Chip (SoC) implementation to realize both power reduction and high estimation accuracy. Long-term PA monitoring is an effective means of preventing lifestyle-related diseases. Low power consumption and long battery life are key features supporting the wider dissemination of the monitoring system. As described herein, an adaptive sampling method is implemented for longer battery life by minimizing the active rate of acceleration without decreasing accuracy. Furthermore, advanced PA classification using both the heart rate and acceleration is introduced. The proposed algorithms are evaluated by experimentation with eight subjects in actual conditions. Evaluation results show that the root mean square error with respect to the result of processing with fixed sampling rate is less than 0.22[METs], and the mean absolute error is less than 0.06[METs]. Furthermore, to minimize the system-level power dissipation, a dedicated SoC is implemented using 130-nm CMOS process with FeRAM. A non-volatile CPU using non-volatile memory and a flip-flop is used to reduce the stand-by power. The proposed algorithm, which is implemented using dedicated hardware, reduces the active rate of the CPU and accelerometer. The current consumption of the SoC is less than 3-µA. And the evaluation system using the test chip achieves 74% system-level power reduction. The total current consumption including that of the accelerometer is 11.3-µA on average.

  • Analysis of SCM-Based SSD Performance in Consideration of SCM Access Unit Size, Write/Read Latencies and Application Request Size

    Hirofumi TAKISHITA  Yutaka ADACHI  Chihiro MATSUI  Ken TAKECUHI  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    253-262

    NAND flash memories used in solid-state drives (SSDs) will be replaced with storage-class memories (SCMs), which are comparable with NAND flash in their cost, and with DRAM in their speed. This paper describes the performance difference of the SCM/NAND flash hybrid SSD and the SCM-based SSD with between sector-unit read (512 Byte) and page-unit read (16 KByte, NAND flash page-size) using synthetic and real workload. Also, effect of the SCM read-unit size on SSD performance are analyzed. When SCM write/read latency is 0.1 us, performance difference of the SCM/NAND flash hybrid SSD with between page- and sector-unit read is about 1% and 6% at most for the write-intensive and read-intensive workloads, respectively. However, performance of the SCM-based SSD is significantly improved when sector-unit read is used because extra read latency does not occur. Especially, the SCM-based SSD IOPS is improved by 131% for proj_3 (read-hot-random), because its read request size is small but its read request ratio is large. This paper also shows IOPS of SCM-based SSD write/read with sector-unit read can be predicted by the average write/read request size of workloads.

  • 82.5GS/s (8×10.3GHz Multi-Phase Clocks) Blind Over-Sampling Based Burst-Mode Clock and Data Recovery for 10G-EPON 10.3-Gb/s/1.25-Gb/s Dual-Rate Operation

    Naoki SUZUKI  Kenichi NAKURA  Takeshi SUEHIRO  Seiji KOZAKI  Junichi NAKAGAWA  Kuniaki MOTOSHIMA  

     
    PAPER

      Pubricized:
    2017/10/18
      Vol:
    E101-B No:4
      Page(s):
    987-994

    We present an 82.5GS/s over-sampling based burst-mode clock and data recovery (BM-CDR) IC chip-set comprising an 82.5GS/s over-sampling IC using 8×10.3GHz multi-phase clocks and a dual-rate data selector logic IC to realize the 10.3Gb/s and 1.25Gb/s dual-rate burst-mode fast-lock operation required for 10-Gigabit based fiber-to-the-x (FTTx) services supported by 10-Gigabit Ethernet passive optical network (10G-EPON) systems. As the key issue for designing the proposed 82.5GS/s BM-CDR, a fresh study of the optimum number of multi-phase clocks, which is equivalent to the sampling resolution, is undertaken, and details of the 10.3Gb/s cum 1.25/Gb/s dual-rate optimum phase data selection logic based on a blind phase decision algorithm, which can realize a full single-platform dual-rate BM-CDR, ate also presented. By using the power of the proposed 82.5GS/s over-sampling BM-CDR in cooperation with our dual-rate burst-mode optical receiver, we further demonstrated that a short dual-rate and burst-mode preamble of 256ns supporting receiver settling and CDR recovery times was successfully achieved, while obtaining high receiver sensitivities of -31.6dBm at 10.3Gb/s and -34.6dBm at 1.25Gb/s and a high pulse-width distortion tolerance of +/-0.53UI, which are superior to the 10G-EPON standard.

  • ECG-Based Heartbeat Classification Using Two-Level Convolutional Neural Network and RR Interval Difference

    Yande XIANG  Jiahui LUO  Taotao ZHU  Sheng WANG  Xiaoyan XIANG  Jianyi MENG  

     
    PAPER-Biological Engineering

      Pubricized:
    2018/01/12
      Vol:
    E101-D No:4
      Page(s):
    1189-1198

    Arrhythmia classification based on electrocardiogram (ECG) is crucial in automatic cardiovascular disease diagnosis. The classification methods used in the current practice largely depend on hand-crafted manual features. However, extracting hand-crafted manual features may introduce significant computational complexity, especially in the transform domains. In this study, an accurate method for patient-specific ECG beat classification is proposed, which adopts morphological features and timing information. As to the morphological features of heartbeat, an attention-based two-level 1-D CNN is incorporated in the proposed method to extract different grained features automatically by focusing on various parts of a heartbeat. As to the timing information, the difference between previous and post RR intervels is computed as a dynamic feature. Both the extracted morphological features and the interval difference are used by multi-layer perceptron (MLP) for classifing ECG signals. In addition, to reduce memory storage of ECG data and denoise to some extent, an adaptive heartbeat normalization technique is adopted which includes amplitude unification, resolution modification, and signal difference. Based on the MIT-BIH arrhythmia database, the proposed classification method achieved sensitivity Sen=93.4% and positive predictivity Ppr=94.9% in ventricular ectopic beat (VEB) detection, sensitivity Sen=86.3% and positive predictivity Ppr=80.0% in supraventricular ectopic beat (SVEB) detection, and overall accuracy OA=97.8% under 6-bit ECG signal resolution. Compared with the state-of-the-art automatic ECG classification methods, these results show that the proposed method acquires comparable accuracy of heartbeat classification though ECG signals are represented by lower resolution.

  • Sentiment Classification for Hotel Booking Review Based on Sentence Dependency Structure and Sub-Opinion Analysis

    Tran Sy BANG  Virach SORNLERTLAMVANICH  

     
    PAPER-Datamining Technologies

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    909-916

    This paper presents a supervised method to classify a document at the sub-sentence level. Traditionally, sentiment analysis often classifies sentence polarity based on word features, syllable features, or N-gram features. A sentence, as a whole, may contain several phrases and words which carry their own specific sentiment. However, classifying a sentence based on phrases and words can sometimes be incoherent because they are ungrammatically formed. In order to overcome this problem, we need to arrange words and phrase in a dependency form to capture their semantic scope of sentiment. Thus, we transform a sentence into a dependency tree structure. A dependency tree is composed of subtrees, and each subtree allocates words and syllables in a grammatical order. Moreover, a sentence dependency tree structure can mitigate word sense ambiguity or solve the inherent polysemy of words by determining their word sense. In our experiment, we provide the details of the proposed subtree polarity classification for sub-opinion analysis. To conclude our discussion, we also elaborate on the effectiveness of the analysis result.

  • Improving Person Re-Identification by Efficient Pairwise-Specific CRC Coding in the XQDA Subspace

    Ying TIAN  Mingyong ZENG  Aihong LU  Bin GAO  Zhangkai LUO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/12/25
      Vol:
    E101-D No:4
      Page(s):
    1209-1212

    A novel and efficient coding method is proposed to improve person re-identification in the XQDA subspace. Traditional CRC (Collaborative Representation based Classification) conducts independent dictionary coding for each image and can not guarantee improved results over conventional euclidian distance. In this letter, however, a specific model is separately constructed for each probe image and each gallery image, i.e. in probe-galley pairwise manner. The proposed pairwise-specific CRC method can excavate extra discriminative information by enforcing a similarity item to pull similar sample-pairs closer. The approach has been evaluated against current methods on two benchmark datasets, achieving considerable improvement and outstanding performance.

  • Pose Estimation with Action Classification Using Global-and-Pose Features and Fine-Grained Action-Specific Pose Models

    Norimichi UKITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/12/08
      Vol:
    E101-D No:3
      Page(s):
    758-766

    This paper proposes an iterative scheme between human action classification and pose estimation in still images. Initial action classification is achieved only by global image features that consist of the responses of various object filters. The classification likelihood of each action weights human poses estimated by the pose models of multiple sub-action classes. Such fine-grained action-specific pose models allow us to robustly identify the pose of a target person under the assumption that similar poses are observed in each action. From the estimated pose, pose features are extracted and used with global image features for action re-classification. This iterative scheme can mutually improve action classification and pose estimation. Experimental results with a public dataset demonstrate the effectiveness of the proposed method both for action classification and pose estimation.

  • Complexity of the Minimum Single Dominating Cycle Problem for Graph Classes

    Hiroshi ETO  Hiroyuki KAWAHARA  Eiji MIYANO  Natsuki NONOUE  

     
    PAPER

      Pubricized:
    2017/12/19
      Vol:
    E101-D No:3
      Page(s):
    574-581

    In this paper, we study a variant of the MINIMUM DOMINATING SET problem. Given an unweighted undirected graph G=(V,E) of n=|V| vertices, the goal of the MINIMUM SINGLE DOMINATING CYCLE problem (MinSDC) is to find a single shortest cycle which dominates all vertices, i.e., a cycle C such that for the set V(C) of vertices in C and the set N(V(C)) of neighbor vertices of C, V(G)=V(C)∪N(V(C)) and |V(C)| is minimum over all dominating cycles in G [6], [17], [24]. In this paper we consider the (in)approximability of MinSDC if input graphs are restricted to some special classes of graphs. We first show that MinSDC is still NP-hard to approximate even when restricted to planar, bipartite, chordal, or r-regular (r≥3). Then, we show the (lnn+1)-approximability and the (1-ε)lnn-inapproximability of MinSDC on split graphs under P≠NP. Furthermore, we explicitly design a linear-time algorithm to solve MinSDC for graphs with bounded treewidth and estimate the hidden constant factor of its running time-bound.

  • Classification of Utterances Based on Multiple BLEU Scores for Translation-Game-Type CALL Systems

    Reiko KUWA  Tsuneo KATO  Seiichi YAMAMOTO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/12/04
      Vol:
    E101-D No:3
      Page(s):
    750-757

    This paper proposes a classification method of second-language-learner utterances for interactive computer-assisted language learning systems. This classification method uses three types of bilingual evaluation understudy (BLEU) scores as features for a classifier. The three BLEU scores are calculated in accordance with three subsets of a learner corpus divided according to the quality of utterances. For the purpose of overcoming the data-sparseness problem, this classification method uses the BLEU scores calculated using a mixture of word and part-of-speech (POS)-tag sequences converted from word sequences based on a POS-replacement rule according to which words are replaced with POS tags in n-grams. Experiments of classifying English utterances by Japanese demonstrated that the proposed classification method achieved classification accuracy of 78.2% which was 12.3 points higher than a baseline with one BLEU score.

  • Statistical Model Using Geometrical-Optical Space Classification: Expansion of Applicable Frequencies to the 5 GHz Band

    Takahiro HASHIMOTO  Takayuki NAKANISHI  Yoshio INASAWA  Yasuhiro NISHIOKA  Hiroaki MIYASHITA  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E101-C No:2
      Page(s):
    135-138

    The method for estimating propagation loss that classifies receiving points into multiple groups by focusing on the number of reflections and diffractions, and applies a separate statistical model to each group was extended from only 2.4 GHz band to both 2.4 GHz and 5 GHz band. The extended statistical model was created from received power measurements. First, an appropriate grouping method was investigated based on the fitting error of statistical model. Non-line-of-sight (NLOS) receiving points were grouped in order of points that a wave reflected one time reaches, points that a wave reflected two times reaches, and points that a wave diffracted one time reaches. Next, the effectiveness of the proposed method was verified by comparison with conventional statistical models (one-slope, dual-slope, multi-wall, partitioned) on three office floors that differ from the environment used to create the statistical model. The average NLOS estimation error for the three evaluation environments was 4.9 dB, demonstrating that the proposed method has accuracy equal to or better than that of conventional methods.

  • Pitch Estimation and Voicing Classification Using Reconstructed Spectrum from MFCC

    JianFeng WU  HuiBin QIN  YongZhu HUA  LingYan FAN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/11/15
      Vol:
    E101-D No:2
      Page(s):
    556-559

    In this paper, a novel method for pitch estimation and voicing classification is proposed using reconstructed spectrum from Mel-frequency cepstral coefficients (MFCC). The proposed algorithm reconstructs spectrum from MFCC with Moore-Penrose pseudo-inverse by Mel-scale weighting functions. The reconstructed spectrum is compressed and filtered in log-frequency. Pitch estimation is achieved by modeling the joint density of pitch frequency and the filter spectrum with Gaussian Mixture Model (GMM). Voicing classification is also achieved by GMM-based model, and the test results show that over 99% frames can be correctly classified. The results of pitch estimation demonstrate that the proposed GMM-based pitch estimator has high accuracy, and the relative error is 6.68% on TIMIT database.

  • Deep Relational Model: A Joint Probabilistic Model with a Hierarchical Structure for Bidirectional Estimation of Image and Labels

    Toru NAKASHIKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/10/25
      Vol:
    E101-D No:2
      Page(s):
    428-436

    Two different types of representations, such as an image and its manually-assigned corresponding labels, generally have complex and strong relationships to each other. In this paper, we represent such deep relationships between two different types of visible variables using an energy-based probabilistic model, called a deep relational model (DRM) to improve the prediction accuracies. A DRM stacks several layers from one visible layer on to another visible layer, sandwiching several hidden layers between them. As with restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs), all connections (weights) between two adjacent layers are undirected. During maximum likelihood (ML) -based training, the network attempts to capture the latent complex relationships between two visible variables with its deep architecture. Unlike deep neural networks (DNNs), 1) the DRM is a totally generative model and 2) allows us to generate one visible variables given the other, and 2) the parameters can be optimized in a probabilistic manner. The DRM can be also fine-tuned using DNNs, like deep belief nets (DBNs) or DBMs pre-training. This paper presents experiments conduced to evaluate the performance of a DRM in image recognition and generation tasks using the MNIST data set. In the image recognition experiments, we observed that the DRM outperformed DNNs even without fine-tuning. In the image generation experiments, we obtained much more realistic images generated from the DRM more than those from the other generative models.

  • PROVIT-CI: A Classroom-Oriented Educational Program Visualization Tool

    Yu YAN  Kohei HARA  Takenobu KAZUMA  Yasuhiro HISADA  Aiguo HE  

     
    PAPER-Educational Technology

      Pubricized:
    2017/11/01
      Vol:
    E101-D No:2
      Page(s):
    447-454

    Studies have shown that program visualization(PV) is effective for student programming exercise or self-study support. However, very few instructors actively use PV tools for programming lectures. This article discussed the impediments the instructors meet during combining PV tools into lecture classrooms and proposed a C programming classroom instruction support tool based on program visualization — PROVIT-CI (PROgram VIsualization Tool for Classroom Instruction). PROVIT-CI has been consecutively and actively used by the instructors in author's university to enhance their lectures since 2015. The evaluation of application results in an introductory C programming course shows that PROVIT-CI is effective and helpful for instructors classroom use.

  • Dynamic Texture Classification Using Multivariate Hidden Markov Model

    Yu-Long QIAO  Zheng-Yi XING  

     
    LETTER-Image

      Vol:
    E101-A No:1
      Page(s):
    302-305

    Dynamic textures are sequences of images of moving scenes that exhibit certain stationarity properties in time. Hidden Markov model (HMM) is a statistical model, which has been used to model the dynamic texture. However, the texture is a region property. The traditional HMM models the property of a single pixel along the time, and does not consider the dependence of the spatial adjacent pixels of the dynamic texture. In this paper, the multivariate hidden Markov model (MHMM) is proposed to characterize and classify the dynamic textures. Specifically, the spatial adjacent pixels are modeled with multivariate hidden Markov model, in which the hidden states of those pixels are modeled with the multivariate Markov chain, and the intensity values of those pixels are modeled as the observation variables. Then the model parameters are used to describe the dynamic texture and the classification is based on the maximum likelihood criterion. The experiments on two benchmark datasets demonstrate the effectiveness of the introduced method.

  • Classification of Linked Data Sources Using Semantic Scoring

    Semih YUMUSAK  Erdogan DOGDU  Halife KODAZ  

     
    PAPER

      Pubricized:
    2017/09/15
      Vol:
    E101-D No:1
      Page(s):
    99-107

    Linked data sets are created using semantic Web technologies and they are usually big and the number of such datasets is growing. The query execution is therefore costly, and knowing the content of data in such datasets should help in targeted querying. Our aim in this paper is to classify linked data sets by their knowledge content. Earlier projects such as LOD Cloud, LODStats, and SPARQLES analyze linked data sources in terms of content, availability and infrastructure. In these projects, linked data sets are classified and tagged principally using VoID vocabulary and analyzed according to their content, availability and infrastructure. Although all linked data sources listed in these projects appear to be classified or tagged, there are a limited number of studies on automated tagging and classification of newly arriving linked data sets. Here, we focus on automated classification of linked data sets using semantic scoring methods. We have collected the SPARQL endpoints of 1,328 unique linked datasets from Datahub, LOD Cloud, LODStats, SPARQLES, and SpEnD projects. We have then queried textual descriptions of resources in these data sets using their rdfs:comment and rdfs:label property values. We analyzed these texts in a similar manner with document analysis techniques by assuming every SPARQL endpoint as a separate document. In this regard, we have used WordNet semantic relations library combined with an adapted term frequency-inverted document frequency (tfidf) analysis on the words and their semantic neighbours. In WordNet database, we have extracted information about comment/label objects in linked data sources by using hypernym, hyponym, homonym, meronym, region, topic and usage semantic relations. We obtained some significant results on hypernym and topic semantic relations; we can find words that identify data sets and this can be used in automatic classification and tagging of linked data sources. By using these words, we experimented different classifiers with different scoring methods, which results in better classification accuracy results.

  • An Empirical Study of Classifier Combination Based Word Sense Disambiguation

    Wenpeng LU  Hao WU  Ping JIAN  Yonggang HUANG  Heyan HUANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2017/08/23
      Vol:
    E101-D No:1
      Page(s):
    225-233

    Word sense disambiguation (WSD) is to identify the right sense of ambiguous words via mining their context information. Previous studies show that classifier combination is an effective approach to enhance the performance of WSD. In this paper, we systematically review state-of-the-art methods for classifier combination based WSD, including probability-based and voting-based approaches. Furthermore, a new classifier combination based WSD, namely the probability weighted voting method with dynamic self-adaptation, is proposed in this paper. Compared with existing approaches, the new method can take into consideration both the differences of classifiers and ambiguous instances. Exhaustive experiments are performed on a real-world dataset, the results show the superiority of our method over state-of-the-art methods.

121-140hit(608hit)