The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] class(608hit)

61-80hit(608hit)

  • Classification Functions for Handwritten Digit Recognition

    Tsutomu SASAO  Yuto HORIKAWA  Yukihiro IGUCHI  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:8
      Page(s):
    1076-1082

    A classification function maps a set of vectors into several classes. A machine learning problem is treated as a design problem for partially defined classification functions. To realize classification functions for MNIST hand written digits, three different architectures are considered: Single-unit realization, 45-unit realization, and 45-unit ×r realization. The 45-unit realization consists of 45 ternary classifiers, 10 counters, and a max selector. Test accuracy of these architectures are compared using MNIST data set.

  • SP-DARTS: Synchronous Progressive Differentiable Neural Architecture Search for Image Classification

    Zimin ZHAO  Ying KANG  Aiqin HOU  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/23
      Vol:
    E104-D No:8
      Page(s):
    1232-1238

    Differentiable neural architecture search (DARTS) is now a widely disseminated weight-sharing neural architecture search method and it consists of two stages: search and evaluation. However, the original DARTS suffers from some well-known shortcomings. Firstly, the width and depth of the network, as well as the operation of two stages are discontinuous, which causes a performance collapse. Secondly, DARTS has a high computational overhead. In this paper, we propose a synchronous progressive approach to solve the discontinuity problem for network depth and width and we use the 0-1 loss function to alleviate the discontinuity problem caused by the discretization of operation. The computational overhead is reduced by using the partial channel connection. Besides, we also discuss and propose a solution to the aggregation of skip operations during the search process of DARTS. We conduct extensive experiments on CIFAR-10 and WANFANG datasets, specifically, our approach reduces search time significantly (from 1.5 to 0.1 GPU days) and improves the accuracy of image recognition.

  • CJAM: Convolutional Neural Network Joint Attention Mechanism in Gait Recognition

    Pengtao JIA  Qi ZHAO  Boze LI  Jing ZHANG  

     
    PAPER

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1239-1249

    Gait recognition distinguishes one individual from others according to the natural patterns of human gaits. Gait recognition is a challenging signal processing technology for biometric identification due to the ambiguity of contours and the complex feature extraction procedure. In this work, we proposed a new model - the convolutional neural network (CNN) joint attention mechanism (CJAM) - to classify the gait sequences and conduct person identification using the CASIA-A and CASIA-B gait datasets. The CNN model has the ability to extract gait features, and the attention mechanism continuously focuses on the most discriminative area to achieve person identification. We present a comprehensive transformation from gait image preprocessing to final identification. The results from 12 experiments show that the new attention model leads to a lower error rate than others. The CJAM model improved the 3D-CNN, CNN-LSTM (long short-term memory), and the simple CNN by 8.44%, 2.94% and 1.45%, respectively.

  • SLIT: An Energy-Efficient Reconfigurable Hardware Architecture for Deep Convolutional Neural Networks Open Access

    Thi Diem TRAN  Yasuhiko NAKASHIMA  

     
    PAPER

      Pubricized:
    2020/12/18
      Vol:
    E104-C No:7
      Page(s):
    319-329

    Convolutional neural networks (CNNs) have dominated a range of applications, from advanced manufacturing to autonomous cars. For energy cost-efficiency, developing low-power hardware for CNNs is a research trend. Due to the large input size, the first few convolutional layers generally consume most latency and hardware resources on hardware design. To address these challenges, this paper proposes an innovative architecture named SLIT to extract feature maps and reconstruct the first few layers on CNNs. In this reconstruction approach, total multiply-accumulate operations are eliminated on the first layers. We evaluate new topology with MNIST, CIFAR, SVHN, and ImageNet datasets on image classification application. Latency and hardware resources of the inference step are evaluated on the chip ZC7Z020-1CLG484C FPGA with Lenet-5 and VGG schemes. On the Lenet-5 scheme, our architecture reduces 39% of latency and 70% of hardware resources with a 0.456 W power consumption compared to previous works. Even though the VGG models perform with a 10% reduction in hardware resources and latency, we hope our overall results will potentially give a new impetus for future studies to reach a higher optimization on hardware design. Notably, the SLIT architecture efficiently merges with most popular CNNs at a slightly sacrificing accuracy of a factor of 0.27% on MNIST, ranging from 0.5% to 1.5% on CIFAR, approximately 2.2% on ImageNet, and remaining the same on SVHN databases.

  • Automatically Generated Data Mining Tools for Complex System Operator's Condition Detection Using Non-Contact Vital Sensing Open Access

    Shakhnaz AKHMEDOVA  Vladimir STANOVOV  Sophia VISHNEVSKAYA  Chiori MIYAJIMA  Yukihiro KAMIYA  

     
    INVITED PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2020/12/24
      Vol:
    E104-B No:6
      Page(s):
    571-579

    This study is focused on the automated detection of a complex system operator's condition. For example, in this study a person's reaction while listening to music (or not listening at all) was determined. For this purpose various well-known data mining tools as well as ones developed by authors were used. To be more specific, the following techniques were developed and applied for the mentioned problems: artificial neural networks and fuzzy rule-based classifiers. The neural networks were generated by two modifications of the Differential Evolution algorithm based on the NSGA and MOEA/D schemes, proposed for solving multi-objective optimization problems. Fuzzy logic systems were generated by the population-based algorithm called Co-Operation of Biology Related Algorithms or COBRA. However, firstly each person's state was monitored. Thus, databases for problems described in this study were obtained by using non-contact Doppler sensors. Experimental results demonstrated that automatically generated neural networks and fuzzy rule-based classifiers can properly determine the human condition and reaction. Besides, proposed approaches outperformed alternative data mining tools. However, it was established that fuzzy rule-based classifiers are more accurate and interpretable than neural networks. Thus, they can be used for solving more complex problems related to the automated detection of an operator's condition.

  • An Improved Online Multiclass Classification Algorithm Based on Confidence-Weighted

    Ji HU  Chenggang YAN  Jiyong ZHANG  Dongliang PENG  Chengwei REN  Shengying YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/15
      Vol:
    E104-D No:6
      Page(s):
    840-849

    Online learning is a method which updates the model gradually and can modify and strengthen the previous model, so that the updated model can adapt to the new data without having to relearn all the data. However, the accuracy of the current online multiclass learning algorithm still has room for improvement, and the ability to produce sparse models is often not strong. In this paper, we propose a new Multiclass Truncated Gradient Confidence-Weighted online learning algorithm (MTGCW), which combine the Truncated Gradient algorithm and the Confidence-weighted algorithm to achieve higher learning performance. The experimental results demonstrate that the accuracy of MTGCW algorithm is always better than the original CW algorithm and other baseline methods. Based on these results, we applied our algorithm for phishing website recognition and image classification, and unexpectedly obtained encouraging experimental results. Thus, we have reasons to believe that our classification algorithm is clever at handling unstructured data which can promote the cognitive ability of computers to a certain extent.

  • An Automatic Detection Approach of Traumatic Bleeding Based on 3D CNN Networks

    Lei YANG  Tingxiao YANG  Hiroki KIMURA  Yuichiro YOSHIMURA  Kumiko ARAI  Taka-aki NAKADA  Huiqin JIANG  Toshiya NAKAGUCHI  

     
    PAPER

      Pubricized:
    2021/01/18
      Vol:
    E104-A No:6
      Page(s):
    887-896

    In medical fields, detecting traumatic bleedings has always been a difficult task due to the small size, low contrast of targets and large number of images. In this work we propose an automatic traumatic bleeding detection approach from contrast enhanced CT images via deep CNN networks, containing segmentation process and classification process. CT values of DICOM images are extracted and processed via three different window settings first. Small 3D patches are cropped from processed images and segmented by a 3D CNN network. Then segmentation results are converted to point cloud data format and classified by a classifier. The proposed pre-processing approach makes the segmentation network be able to detect small and low contrast targets and achieve a high sensitivity. The additional classification network solves the boundary problem and short-sighted problem generated during the segmentation process to further decrease false positives. The proposed approach is tested with 3 CT cases containing 37 bleeding regions. As a result, a total of 34 bleeding regions are correctly detected, the sensitivity reaches 91.89%. The average false positive number of test cases is 1678. 46.1% of false positive predictions are decreased after being classified. The proposed method is proved to be able to achieve a high sensitivity and be a reference of medical doctors.

  • Backbone Alignment and Cascade Tiny Object Detecting Techniques for Dolphin Detection and Classification

    Yih-Cherng LEE  Hung-Wei HSU  Jian-Jiun DING  Wen HOU  Lien-Shiang CHOU  Ronald Y. CHANG  

     
    PAPER-Image

      Pubricized:
    2020/09/29
      Vol:
    E104-A No:4
      Page(s):
    734-743

    Automatic tracking and classification are essential for studying the behaviors of wild animals. Owing to dynamic far-shooting photos, the occlusion problem, protective coloration, the background noise is irregular interference for designing a computerized algorithm for reducing human labeling resources. Moreover, wild dolphin images are hard-acquired by on-the-spot investigations, which takes a lot of waiting time and hardly sets the fixed camera to automatic monitoring dolphins on the ocean in several days. It is challenging tasks to detect well and classify a dolphin from polluted photos by a single famous deep learning method in a small dataset. Therefore, in this study, we propose a generic Cascade Small Object Detection (CSOD) algorithm for dolphin detection to handle small object problems and develop visualization to backbone based classification (V2BC) for removing noise, highlighting features of dolphin and classifying the name of dolphin. The architecture of CSOD consists of the P-net and the F-net. The P-net uses the crude Yolov3 detector to be a core network to predict all the regions of interest (ROIs) at lower resolution images. Then, the F-net, which is more robust, is applied to capture the ROIs from high-resolution photos to solve single detector problems. Moreover, a visualization to backbone based classification (V2BC) method focuses on extracting significant regions of occluded dolphin and design significant post-processing by referencing the backbone of dolphins to facilitate for classification. Compared to the state of the art methods, including faster-rcnn, yolov3 detection and Alexnet, the Vgg, and the Resnet classification. All experiments show that the proposed algorithm based on CSOD and V2BC has an excellent performance in dolphin detection and classification. Consequently, compared to the related works of classification, the accuracy of the proposed designation is over 14% higher. Moreover, our proposed CSOD detection system has 42% higher performance than that of the original Yolov3 architecture.

  • Encrypted Traffic Identification by Fusing Softmax Classifier with Its Angular Margin Variant

    Lin YAN  Mingyong ZENG  Shuai REN  Zhangkai LUO  

     
    LETTER-Information Network

      Pubricized:
    2021/01/13
      Vol:
    E104-D No:4
      Page(s):
    517-520

    Encrypted traffic identification is to predict traffic types of encrypted traffic. A deep residual convolution network is proposed for this task. The Softmax classifier is fused with its angular variant, which sets an angular margin to achieve better discrimination. The proposed method improves representation learning and reaches excellent results on the public dataset.

  • Joint Analysis of Sound Events and Acoustic Scenes Using Multitask Learning

    Noriyuki TONAMI  Keisuke IMOTO  Ryosuke YAMANISHI  Yoichi YAMASHITA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/11/19
      Vol:
    E104-D No:2
      Page(s):
    294-301

    Sound event detection (SED) and acoustic scene classification (ASC) are important research topics in environmental sound analysis. Many research groups have addressed SED and ASC using neural-network-based methods, such as the convolutional neural network (CNN), recurrent neural network (RNN), and convolutional recurrent neural network (CRNN). The conventional methods address SED and ASC separately even though sound events and acoustic scenes are closely related to each other. For example, in the acoustic scene “office,” the sound events “mouse clicking” and “keyboard typing” are likely to occur. Therefore, it is expected that information on sound events and acoustic scenes will be of mutual aid for SED and ASC. In this paper, we propose multitask learning for joint analysis of sound events and acoustic scenes, in which the parts of the networks holding information on sound events and acoustic scenes in common are shared. Experimental results obtained using the TUT Sound Events 2016/2017 and TUT Acoustic Scenes 2016 datasets indicate that the proposed method improves the performance of SED and ASC by 1.31 and 1.80 percentage points in terms of the F-score, respectively, compared with the conventional CRNN-based method.

  • Identification of Multiple Image Steganographic Methods Using Hierarchical ResNets

    Sanghoon KANG  Hanhoon PARK  Jong-Il PARK  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2020/11/19
      Vol:
    E104-D No:2
      Page(s):
    350-353

    Image deformations caused by different steganographic methods are typically extremely small and highly similar, which makes their detection and identification to be a difficult task. Although recent steganalytic methods using deep learning have achieved high accuracy, they have been made to detect stego images to which specific steganographic methods have been applied. In this letter, a staganalytic method is proposed that uses hierarchical residual neural networks (ResNet), allowing detection (i.e. classification between stego and cover images) and identification of four spatial steganographic methods (i.e. LSB, PVD, WOW and S-UNIWARD). Experimental results show that using hierarchical ResNets achieves a classification rate of 79.71% in quinary classification, which is approximately 23% higher compared to using a plain convolutional neural network (CNN).

  • Fuzzy Output Support Vector Machine Based Incident Ticket Classification

    Libo YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/10/14
      Vol:
    E104-D No:1
      Page(s):
    146-151

    Incident ticket classification plays an important role in the complex system maintenance. However, low classification accuracy will result in high maintenance costs. To solve this issue, this paper proposes a fuzzy output support vector machine (FOSVM) based incident ticket classification approach, which can be implemented in the context of both two-class SVMs and multi-class SVMs such as one-versus-one and one-versus-rest. Our purpose is to solve the unclassifiable regions of multi-class SVMs to output reliable and robust results by more fine-grained analysis. Experiments on both benchmark data sets and real-world ticket data demonstrate that our method has better performance than commonly used multi-class SVM and fuzzy SVM methods.

  • ECG Classification with Multi-Scale Deep Features Based on Adaptive Beat-Segmentation

    Huan SUN  Yuchun GUO  Yishuai CHEN  Bin CHEN  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1403-1410

    Recently, the ECG-based diagnosis system based on wearable devices has attracted more and more attention of researchers. Existing studies have achieved high classification accuracy by using deep neural networks (DNNs), but there are still some problems, such as: imprecise heart beat segmentation, inadequate use of medical knowledge, the same treatment of features with different importance. To address these problems, this paper: 1) proposes an adaptive segmenting-reshaping method to acquire abundant useful samples; 2) builds a set of hand-crafted features and deep features on the inner-beat, beat and inter-beat scale by integrating enough medical knowledge. 3) introduced a modified channel attention module (CAM) to augment the significant channels in deep features. Following the Association for Advancement of Medical Instrumentation (AAMI) recommendation, we classified the dataset into four classes and validated our algorithm on the MIT-BIH database. Experiments show that the accuracy of our model reaches 96.94%, a 3.71% increase over that of a state-of-the-art alternative.

  • Revisiting a Nearest Neighbor Method for Shape Classification

    Kazunori IWATA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/09/23
      Vol:
    E103-D No:12
      Page(s):
    2649-2658

    The nearest neighbor method is a simple and flexible scheme for the classification of data points in a vector space. It predicts a class label of an unseen data point using a majority rule for the labels of known data points inside a neighborhood of the unseen data point. Because it sometimes achieves good performance even for complicated problems, several derivatives of it have been studied. Among them, the discriminant adaptive nearest neighbor method is particularly worth revisiting to demonstrate its application. The main idea of this method is to adjust the neighbor metric of an unseen data point to the set of known data points before label prediction. It often improves the prediction, provided the neighbor metric is adjusted well. For statistical shape analysis, shape classification attracts attention because it is a vital topic in shape analysis. However, because a shape is generally expressed as a matrix, it is non-trivial to apply the discriminant adaptive nearest neighbor method to shape classification. Thus, in this study, we develop the discriminant adaptive nearest neighbor method to make it slightly more useful in shape classification. To achieve this development, a mixture model and optimization algorithm for shape clustering are incorporated into the method. Furthermore, we describe several helpful techniques for the initial guess of the model parameters in the optimization algorithm. Using several shape datasets, we demonstrated that our method is successful for shape classification.

  • Multi-Task Convolutional Neural Network Leading to High Performance and Interpretability via Attribute Estimation

    Keisuke MAEDA  Kazaha HORII  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E103-A No:12
      Page(s):
    1609-1612

    A multi-task convolutional neural network leading to high performance and interpretability via attribute estimation is presented in this letter. Our method can provide interpretation of the classification results of CNNs by outputting attributes that explain elements of objects as a judgement reason of CNNs in the middle layer. Furthermore, the proposed network uses the estimated attributes for the following prediction of classes. Consequently, construction of a novel multi-task CNN with improvements in both of the interpretability and classification performance is realized.

  • Implementation of Real-Time Body Motion Classification Using ZigBee Based Wearable BAN System

    Masahiro MITTA  Minseok KIM  Yuki ICHIKAWA  

     
    PAPER

      Pubricized:
    2020/01/10
      Vol:
    E103-B No:6
      Page(s):
    662-668

    This paper presents a real-time body motion classification system using the radio channel characteristics of a wearable body area network (BAN). We developed a custom wearable BAN radio channel measurement system by modifying an off-the-shelf ZigBee-based sensor network system, where the link quality indicator (LQI) values of the wireless links between the coordinator and four sensor nodes can be measured. After interpolating and standardizing the raw data samples in a pre-processing stage, the time-domain features are calculated, and the body motion is classified by a decision-tree based random forest machine learning algorithm which is most suitable for real-time processing. The features were carefully chosen to exclude those that exhibit the same tendency based on the mean and variance of the features to avoid overfitting. The measurements demonstrated successful real-time body motion classification and revealed the potential for practical use in various daily-life applications.

  • A Semantic Similarity Supervised Autoencoder for Zero-Shot Learning

    Fengli SHEN  Zhe-Ming LU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/03
      Vol:
    E103-D No:6
      Page(s):
    1419-1422

    This Letter proposes a autoencoder model supervised by semantic similarity for zero-shot learning. With the help of semantic similarity vectors of seen and unseen classes and the classification branch, our experimental results on two datasets are 7.3% and 4% better than the state-of-the-art on conventional zero-shot learning in terms of the averaged top-1 accuracy.

  • Gradient-Enhanced Softmax for Face Recognition

    Linjun SUN  Weijun LI  Xin NING  Liping ZHANG  Xiaoli DONG  Wei HE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/07
      Vol:
    E103-D No:5
      Page(s):
    1185-1189

    This letter proposes a gradient-enhanced softmax supervisor for face recognition (FR) based on a deep convolutional neural network (DCNN). The proposed supervisor conducts the constant-normalized cosine to obtain the score for each class using a combination of the intra-class score and the soft maximum of the inter-class scores as the objective function. This mitigates the vanishing gradient problem in the conventional softmax classifier. The experiments on the public Labeled Faces in the Wild (LFW) database denote that the proposed supervisor achieves better results when compared with those achieved using the current state-of-the-art softmax-based approaches for FR.

  • Patient-Specific ECG Classification with Integrated Long Short-Term Memory and Convolutional Neural Networks

    Jiaquan WU  Feiteng LI  Zhijian CHEN  Xiaoyan XIANG  Yu PU  

     
    PAPER-Biological Engineering

      Pubricized:
    2020/02/13
      Vol:
    E103-D No:5
      Page(s):
    1153-1163

    This paper presents an automated patient-specific ECG classification algorithm, which integrates long short-term memory (LSTM) and convolutional neural networks (CNN). While LSTM extracts the temporal features, such as the heart rate variance (HRV) and beat-to-beat correlation from sequential heartbeats, CNN captures detailed morphological characteristics of the current heartbeat. To further improve the classification performance, adaptive segmentation and re-sampling are applied to align the heartbeats of different patients with various heart rates. In addition, a novel clustering method is proposed to identify the most representative patterns from the common training data. Evaluated on the MIT-BIH arrhythmia database, our algorithm shows the superior accuracy for both ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB) recognition. In particular, the sensitivity and positive predictive rate for SVEB increase by more than 8.2% and 8.8%, respectively, compared with the prior works. Since our patient-specific classification does not require manual feature extraction, it is potentially applicable to embedded devices for automatic and accurate arrhythmia monitoring.

  • Anomaly Detection of Folding Operations for Origami Instruction with Single Camera

    Hiroshi SHIMANUKI  Toyohide WATANABE  Koichi ASAKURA  Hideki SATO  Taketoshi USHIAMA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1088-1098

    When people learn a handicraft with instructional contents such as books, videos, and web pages, many of them often give up halfway because the contents do not always assure how to make it. This study aims to provide origami learners, especially beginners, with feedbacks on their folding operations. An approach for recognizing the state of the learner by using a single top-view camera, and pointing out the mistakes made during the origami folding operation is proposed. First, an instruction model that stores easy-to-follow folding operations is defined. Second, a method for recognizing the state of the learner's origami paper sheet is proposed. Third, a method for detecting mistakes made by the learner by means of anomaly detection using a one-class support vector machine (one-class SVM) classifier (using the folding progress and the difference between the learner's origami shape and the correct shape) is proposed. Because noises exist in the camera images due to shadows and occlusions caused by the learner's hands, the shapes of the origami sheet are not always extracted accurately. To train the one-class SVM classifier with high accuracy, a data cleansing method that automatically sifts out video frames with noises is proposed. Moreover, using the statistics of features extracted from the frames in a sliding window makes it possible to reduce the influence by the noises. The proposed method was experimentally demonstrated to be sufficiently accurate and robust against noises, and its false alarm rate (false positive rate) can be reduced to zero. Requiring only a single camera and common origami paper, the proposed method makes it possible to monitor mistakes made by origami learners and support their self-learning.

61-80hit(608hit)