The search functionality is under construction.

Keyword Search Result

[Keyword] coherent(159hit)

21-40hit(159hit)

  • Frequency Diversity Array MIMO Track-before-Detect in Coherent Repeated Interference

    Yuan ZHAO  Qi ZHANG  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:10
      Page(s):
    1703-1707

    This letter proposes a track before detect scheme embedded in coherent repeated interference with the aid of frequency diversity array. The unmatched properties between echo and interferences are firstly discussed from both signal processing and data processing standpoints. Afterward, the interference suppression algorithm with virtual channel weighting at continue sampling stage is proposed, followed with kinematics constraint correspondingly. Further, the evaluations of the interference suppression performance are carried out through simulations which illustrate the feasibility and validity of the proposed algorithm.

  • A Simple Formula for Noncoherent Capacity in Highly Underspread WSSUS Channel

    Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1262-1269

    Channel capacity is a useful numerical index not only for grasping the upper limit of the transmission bit rate but also for comparing the abilities of various digital transmission schemes commonly used in radio-wave propagation environments because the channel capacity does not depend on specific communication methods such as modulation/demodulation schemes or error correction schemes. In this paper, modeling of the noncoherent capacity in a highly underspread WSSUS channel is investigated using a new approach. Unlike the conventional method, namely, the information theoretic method, a very straightforward formula can be obtained in a statistical manner. Although the modeling in the present study is carried out using a somewhat less rigorous approach, the result obtained is useful for roughly understanding the channel capacity in doubly selective fading environments. We clarify that the radio wave propagation parameter of the spread factor, which is the product of the Doppler spread and the delay spread, can be related quantitatively to the effective maximum signal-to-interference ratio by a simple formula. Using this model, the physical limit of wireless digital transmission is discussed from a radio wave propagation perspective.

  • Surface Height Change Estimation Method Using Band-Divided Coherence Functions with Fully Polarimetric SAR Images

    Ryo OYAMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Pubricized:
    2017/05/19
      Vol:
    E100-B No:11
      Page(s):
    2087-2093

    Microwave imaging techniques, in particular, synthetic aperture radar (SAR), are promising tools for terrain surface measurement, irrespective of weather conditions. The coherent change detection (CCD) method is being widely applied to detect surface changes by comparing multiple complex SAR images captured from the same scanning orbit. However, in the case of a general damage assessment after a natural disaster such as an earthquake or mudslide, additional about surface change, such as surface height change, is strongly required. Given this background, the current study proposes a novel height change estimation method using a CCD model based on the Pauli decomposition of fully polarimetric SAR images. The notable feature of this method is that it can offer accurate height change beyond the assumed wavelength, by introducing the frequency band-divided approach, and so is significantly better than InSAR based approaches. Experiments in an anechoic chamber on a 1/100 scaled model of the X-band SAR system, show that our proposed method outputs more accurate height change estimates than a similar method that uses single polarimetric data, even if the height change amount is over the assumed wavelength.

  • Numerical Investigation of a Multi-Rate Coherent Burst-Mode PDM-QPSK Optical Receiver for Flexible Optical Networks

    José Manuel Delgado MENDINUETA  Hideaki FURUKAWA  Satoshi SHINADA  Naoya WADA  

     
    PAPER

      Pubricized:
    2017/04/20
      Vol:
    E100-B No:10
      Page(s):
    1758-1764

    We numerically investigate a PDM-QPSK multi-rate coherent burst-mode optical receiver capable of receiving 3 different line-rates, suitable for next generation optical networks such as hybrid optical circuit switching (OCS)/optical packet switching (OPS) networks, access networks and datacenter networks. The line-rate detection algorithm relies on a simple-to-generate optical header, it is based on the fast Fourier transform (FFT) which can be efficiently implemented with the Goertzel algorithm, and it is insensitive to polarization rotations and frequency offset. Numerically, we demonstrate that performance in terms of packet detection rate (PER) can be tailored by controlling the sizes of the packet header and the line-rate estimator.

  • Optical Transmission Systems Toward Longer Reach and Larger Capacity Open Access

    Kazuo HAGIMOTO  

     
    INVITED PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1696-1706

    This paper reviews long optical reach and large capacity transmission which has become possible because of the application of wide-band and low-noise optical fiber amplifiers and digital coherent signal processing. The device structure and mechanism together with their significance are discussed.

  • An Unambiguous Acquisition Algorithm Based on Unit Correlation for BOC(n,n) Signal

    Yuan-fa JI  Yuan LIU  Wei-min ZHEN  Xi-yan SUN  Bao-guo YU  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2017/02/17
      Vol:
    E100-B No:8
      Page(s):
    1507-1513

    To overcome the false lock or detection missing problems caused by the multiple peaks of the auto-correlation function (ACF) of Binary Offset Carrier (BOC) modulated signal, an acquisition algorithm based on unit correlation for BOC(n,n) signal is proposed in this paper. The local BOC signal is separated into two unit signals, an odd one and an even one. Then a reconstruction of the unit correlation functions between the unit signals and the received BOC signal is performed and M sections of reconstructed correlation function are accumulated according to the non-coherent method, so that this novel acquisition algorithm can not only eliminate the multiple secondary peaks, but also retain the advantage of the narrow correlation main peak. Simulation results show that the acquisition sensitivity of the proposed algorithm is increased 3dBHz compared with the ASPeCT method, and the computation cost is only 41.46% of the ASPeCT method when M=2.

  • 2D Central DOA Estimation of Coherently Distributed Sources Using a Pair of Uniform Circular Arrays

    Zheng DAI  Weimin SU  Hong GU  

     
    PAPER-Communication Theory and Signals

      Vol:
    E100-A No:5
      Page(s):
    1179-1187

    In this paper, we consider a coherently distributed (CD) source model. Since the CD source is characterized by four parameters: central azimuth direction-of-arrival (DOA), azimuth angular spread, central elevation DOA and elevation angular spread, the parameter estimation is normally complex. We propose an algorithm that combines the rotational invariance techniques (ESPRIT) and the generalized ESPRIT algorithm for the 2-dimensional (2D) central DOA estimation of CD sources. Using a pair of uniform circular arrays (UCAs), the proposed solution is able to obtain the central DOAs with both high accuracy and low computational complexity. The central elevation DOAs are estimated by using the rotational invariance relation between the two uniform circular sub-arrays. Based on the centrosymmetric structure of UCA, the generalized ESPRIT algorithm is then applied to estimate the central azimuth DOAs through one-dimensional searching. It is noteworthy that the central DOAs are estimated without any information of the deterministic angular distribution function (DADF). The performance of the proposed algorithm is demonstrated via computer simulations.

  • InP-Based Monolithic Integration Technologies for 100/200Gb/s Pluggable Coherent Transceivers Open Access

    Hideki YAGI  Yoshihiro YONEDA  Mitsuru EKAWA  Hajime SHOJI  

     
    INVITED PAPER

      Vol:
    E100-C No:2
      Page(s):
    179-186

    This paper reports dual-polarization In-phase and Quadrature (DP-IQ) modulators and photodetectors integrated with the 90° hybrid using InP-based monolithic integration technologies for 100/200Gb/s coherent transmission. The DP-IQ modulator was monolithically integrated with the Mach-Zehnder modulator array consisting of deep-ridge waveguides formed through dry etching and benzocyclobutene planarization processes. This DP-IQ modulator exhibited the low half-wavelength voltage (Vπ=1.5V) and the wide 3-dB bandwidth (f3dB > 28GHz). The photodetector monolithically integrated with the 90° hybrid consisting of multimode interference structures was realized by the butt-joint regrowth. A responsivity including total loss of 7.9dB in the waveguide was as high as 0.155A/W at a wavelength of 1550nm, and responsivity imbalance of the In-phase and Quadrature channels was less than ±0.5dB over the C-band. In addition, the low dark current (less than 500pA up to 85°C @ -3.0V) and the stable operation in the accelerated aging test (test condition: -5V at 175°C) over 5,000h were successfully achieved for the p-i-n-photodiode array with a buried heterostructure formed through the selective embedding regrowth. Finally, a receiver responsivity including intrinsic loss of 3dB in the polarization beam splitter was higher than 0.070A/W at a wavelength of 1550nm through the integration of the spot-size converter, and demodulation of 128Gb/s DP-QPSK and 224Gb/s DP-16QAM modulated signals was demonstrated for the compact coherent receiver using this photodetector integrated with the 90° hybrid. Therefore, we indicated that these InP-based monolithically integrated photonic devices are very useful for 100/200Gb/s pluggable coherent transceivers.

  • A Feasibility Study of DSP-Enabled Cancellation of Random Phase Noise Caused by Optical Coherent Transceivers in Next-Generation Optical Access Systems

    Sang-Yuep KIM  Jun-ichi KANI  Hideaki KIMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2016/06/28
      Vol:
    E99-B No:12
      Page(s):
    2574-2582

    This paper presents a scheme that digitally cancels the unwanted phase components generated by the transmitter's laser and the receiver's local oscillator laser; such components place a substantial limit on the performance of coherent transceivers monolithically integrated with lasers in a photonic integrated circuit (PIC). Our cancellation proposal adopts the orthogonal polarization approach to provide a reference that is uncorrelated with the data signal. We elaborate on the principle of our proposal and its digital signal processing (DSP) algorithm. Experiments on a VCSEL with a linewidth of approximately 300MHz verify that our proposal can overcome the inherent phase noise limitations indicated by simulations and experiments. Our cancellation algorithm in conjunction with CMA-based polarization control is demonstrated and evaluated to confirm the feasibility of our proposal. The achievement of greatly relaxed laser linewidth will offer a significant benefit in offsetting the technical and cost requirements of coherent transceiver PICs with lasers. Therefore, our cancellation proposal is an enabling technology for the successful deployment of future coherent-based passive optical network (PON) systems.

  • Optical DP-High Order-QAM Transmission System for High-Speed Short Links Utilizing Copropagating Twin Local Lights

    Hiroto KAWAKAMI  Takayuki KOBAYASHI  Yutaka MIYAMOTO  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E99-B No:8
      Page(s):
    1799-1804

    A novel optical high order quadrature amplitude modulation (QAM) transmission system for high-speed short links is described. Dual-polarization (DP) QAM and twin local lights are generated from one light source in the system, and these lightwaves are simultaneously transmitted via standard single mode fiber. The receiver can be constructed simply because it does not require a coherent light source under wavelength control. The system enables a 3.1 Gbaud DP-16-QAM signal to be successfully demodulated after 80-km transmission without using an optical dispersion compensator. It also achieves high tolerance against phase noise in the signal light source.

  • Eigen Domain Channel-Unaware Narrowband Interference Suppression for Time Synchronization

    Fengwei LIU  Hongzhi ZHAO  Ying LIU  Youxi TANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1151-1156

    In this paper, we propose a channel-unaware algorithm to suppress the narrowband interference (NBI) for the time synchronization, where multiple antennas are equipped at the receiver. Based on the fact that the characteristics of synchronization signal are different from those of NBI in both the time and spatial domain, the proposed algorithm suppresses the NBI by utilizing the multiple receive antennas in the eigen domain of NBI, where the eigen domain is obtained from the time domain statistical information of NBI. Because time synchronization involves incoherent detection, the proposed algorithm does not use the desired channel information, which is different from the eigen domain interference rejection combining (E-IRC). Simulation results show, compared with the traditional frequency domain NBI suppression technique, the proposed algorithm has about a 2 dB gain under the same probability of detection.

  • Photonic Millimeter Wave Transmitter for a Real-Time Coherent Wireless Link Based on Injection Locking of Integrated Laser Diodes

    Shintaro HISATAKE  Guillermo CARPINTERO  Yasuyuki YOSHIMIZU  Yusuke MINAMIKATA  Kazuki OOGIMOTO  Yu YASUDA  Frédéric van DIJK  Tolga TEKIN  Tadao NAGATSUMA  

     
    PAPER

      Vol:
    E98-C No:12
      Page(s):
    1105-1111

    We propose the concept of an integrated coherent photonic wireless transmitter based on the simultaneous injection locking of two monolithically integrated distributed feedback (DFB) laser diodes (LDs) using an optical frequency comb (OFC). We characterize the basic operation of the transmitter and demonstrate that two injection-locked integrated DFB LDs are sufficiently stable to generate the carrier signal using a uni-traveling-carrier photodiode (UTC-PD) for a real-time error-free (bit error rate: BER < 10-11) coherent transmission with a data rate of 10 Gbit/s at a carrier frequency of 97 GHz. In the coherent wireless transmission, we compare the BER characteristics of the injection-locked transmitter with that of an actively phase-stabilized transmitter and show that the power penalty of 8-dB for the injection-locked transmitter is due to the RF spurious components, which can be reduced by integrating the OFC generator (OFCG) and LDs on the same chip. Our results suggest that the integration of the OFCG, DFB LDs, modulators, semiconductor optical amplifiers, and UTC-PD on the same chip is a promising strategy to develop a practical real-time ultrafast coherent millimeter/terahertz wave wireless transmitter.

  • High-Speed Coherent Transmission Using Advanced Photonics in Terahertz Bands Open Access

    Atsushi KANNO  Pham TIEN DAT  Norihiko SEKINE  Iwao HOSAKO  Tetsuya KAWANISHI  Yuki YOSHIDA  Ken'ichi KITAYAMA  

     
    INVITED PAPER

      Vol:
    E98-C No:12
      Page(s):
    1071-1080

    A terahertz-wave communication system directly connected to an optical fiber network is promising for application to future mobile backhaul and fronthaul links. The possible broad bandwidth in the terahertz band is useful for high-speed signal transmission as well as radio-space encapsulation to the high-frequency carrier. In both cases, the low-latency feature becomes important to enhance the throughput in mobile communication and is realized by waveform transport technology without any digital-signal-processing-based media conversion. A highly precise optical frequency comb signal generated by optical modulation and the vector signal demodulation technology adopted from advanced optical fiber communication technologies help perform modulation and demodulation with impairment compensation at just the edges of the link. Terahertz wave, radio over fiber, waveform transport, coherent detection, multilevel modulation, radio on radio.

  • Central Angle Estimation of Distributed Targets with Electric Vector Sensors in MIMO Radar

    Wei WANG  Ben WANG  Xiangpeng WANG  Ping HUANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:10
      Page(s):
    2060-2067

    In this paper, a novel approach for central angle estimation of coherently distributed targets that utilizes electric vector sensors in bistatic MIMO radar is proposed. First, the coherently distributed targets signal model in bistatic MIMO radar that equipped with electric vector sensors is reconstructed. The Hadamard product rotation invariance property of the coherently distributed targets' steering vectors is found to get the initial estimation of direction of departure (DOD). 1-D MUSIC is then used to estimate the accurate central angles of direction of arrival (DOA) and DOD. The proposed method can estimate the central angles of DOA and DOD efficiently and accurately without pairing even in the situation where the angular signal distribution functions are unknown. Our method has better performance than Guo's algorithm. Numerical results verify the improvement and performance of the proposed algorithm.

  • Accurate Coherent Change Detection Method Based on Pauli Decomposition for Fully Polarimetric SAR Imagery

    Ryo OYAMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E98-B No:7
      Page(s):
    1390-1395

    Microwave imaging techniques, particularly for synthetic aperture radar (SAR), produce high-resolution terrain surface images regardless of the weather conditions. Focusing on a feature of complex SAR images, coherent change detection (CCD) approaches have been developed in recent decades that can detect invisible changes in the same regions by applying phase interferometry to pairs of complex SAR images. On the other hand, various techniques of polarimetric SAR (PolSAR) image analysis have been developed, since fully polarimetric data often include valuable information that cannot be obtained from single polarimetric observations. According to this background, various coherent change detection methods based on fully polarimetric data have been proposed. However, the detection accuracies of these methods often degrade in low signal-to-noise ratio (SNR) situations due to the lower signal levels of cross-polarized components compared with those of co-polarized ones. To overcome the problem mentioned above, this paper proposes a novel CCD method by introducing the Pauli decomposition and the weighting of component with their respective SNR. The experimental data obtained in anechoic chamber show that the proposed method significantly enhances the performance of the receiver operation characteristic (ROC) compared with that obtained by a conventional approach.

  • Parameter Estimation of Coherently Distributed Noncircular Signals

    Xuemin YANG  Zhi ZHENG  Guangjun LI  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:7
      Page(s):
    1316-1322

    In this paper, a new parameter estimator for coherently distributed (CD) noncircular (NC) signals is proposed, and can estimate both the central direction-of-arrivals (DOAs) and the angular spreads. It can also be considered as an extended version of the generalized Capon method by using both covariance matrix and an elliptic covariance matrix. The central DOAs and angular spreads are obtained by two-dimensional spectrum-peak searching. Numerical examples illustrate that the proposed method can estimate the central DOAs and the angular spreads when the number of signals is greater than the number of sensors. The proposed method also offers better performance than the methods against which it is compared.

  • Balance Differential Coherent Bit Synchronization Algorithm for GNSS Receiver

    Dengyun LEI  Weijun LU  Yanbin ZHANG  Dunshan YU  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E98-B No:6
      Page(s):
    1133-1140

    Due to low signal-to-carrier ratio and high dynamic, the frequency deviation affects the bit synchronization in GNSS receiver. This paper proposes a balance differential coherent bit synchronization algorithm, which uses the differential coherent method to eliminate the influence of the frequency deviation. By enlarging the differential distance, the proposed algorithm achieves higher bit synchronization rates. Combining two complementary differential coherent parts, the proposed algorithm avoids the unbalance problem and the attenuation of accumulation. Furthermore, a general architecture is presented to reduce the system complexity. Experimental results show that the proposed algorithm improves the sensitivity of bit synchronization by 3∼7dB compared with the previous method.

  • A GPS Bit Synchronization Method Based on Frequency Compensation

    Xinning LIU  Yuxiang NIU  Jun YANG  Peng CAO  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E98-B No:4
      Page(s):
    746-753

    TTFF (Time-To-First-Fix) is an important indicator of GPS receiver performance, and must be reduced as much as possible. Bit synchronization is the pre-condition of positioning, which affects TTFF. The frequency error leads to power loss, which makes it difficult to find the bit edge. The conventional bit synchronization methods only work well when there is no or very small frequency error. The bit synchronization process is generally carried out after the pull-in stage, where the carrier loop is already stable. In this paper, a new bit synchronization method based on frequency compensation is proposed. Through compensating the frequency error, the new method reduces the signal power loss caused by the accumulation of coherent integration. The performances of the new method in different frequency error scenarios are compared. The parameters in the proposed method are analyzed and optimized to reduce the computational complexity. Simulation results show that the new method has good performance when the frequency error is less than 25Hz. Test results show that the new method can tolerate dynamic frequency errors, and it is possible to move the bit synchronization to the pull-in process to reduce the TTFF.

  • Improved Direction-of-Arrival Estimation for Uncorrelated and Coherent Signals in the Presence of Multipath Propagation

    Xiao Yu LUO  Ping WEI  Lu GAN  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    881-884

    Recently, Gan and Luo have proposed a direction-of-arrival estimation method for uncorrelated and coherent signals in the presence of multipath propagation [3]. In their method, uncorrelated and coherent signals are distinguished by rotational invariance techniques and the property of the moduli of eigenvalues. However, due to the limitation of finite number of sensors, the pseudo-inverse matrix derived in this method is an approximate one. When the number of sensors is small, the approximation error is large, which adversely affects the property of the moduli of eigenvalues. Consequently, the method in [3] performs poorly in identifying uncorrelated signals under such circumstance. Moreover, in cases of small number of snapshots and low signal to noise ratio, the performance of their method is poor as well. Therefore, in this letter we first study the approximation in [3] and then propose an improved method that performs better in distinguishing between uncorrelated signals and coherent signals and in the aforementioned two cases. The simulation results demonstrate the effectiveness and efficiency of the proposed method.

  • Coherent Combining-Based Initial Ranging Scheme for MIMO-OFDMA Systems

    Yujie XIA  Guangliang REN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2203-2211

    A coherent combining-based initial ranging scheme is proposed for multiple-input multiple-output and orthogonal frequency division multiple access systems. The proposed algorithm utilizes the correlation properties of the ranging codes to resolve the multipath components, coherently combines the initial ranging signal of resolved path on each receiving antenna to maximize the output signal-to-interference-and-noise ratio, and then collects the power of the multipath signals to detect the states of the ranging codes. Simulation results show that the proposed scheme has much better performance than the available noncoherent combining method, and can accommodate more active ranging users simultaneously in each cell.

21-40hit(159hit)