The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] coherent(160hit)

81-100hit(160hit)

  • Coherent Decomposition of Fully Polarimetric FM-CW Radar Data

    Jun NAKAMURA  Kazuyasu AOYAMA  Muneyuki IKARASHI  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    PAPER-Sensing

      Vol:
    E91-B No:7
      Page(s):
    2374-2379

    This paper presents a coherent decomposition scheme for polarimetric SAR data. Coherent decomposition means the decomposition is applied to a single or a few scattering matrix data. Based on the scattering matrix acquired with an FM-CW polarimetric SAR system, we have devised a simple decomposition technique using the coherency matrix for the purpose of identifying scatterers. This paper presents the decomposition technique and some decomposition results obtained by a fully polarimetric FM-CW radar. It is shown the scattering mechanisms are well recovered and the orientation angles of wire scatterer are precisely measured.

  • Optical Phase Estimation in an Urban Wireless Communications Enviroment

    Juan DE DIOS SANCHEZ LOPES  Arturo ARVIZU MONDRAGON  Javier MENDIETA JIMENEZ  

     
    LETTER-Optical Wireless Communications

      Vol:
    E91-B No:7
      Page(s):
    2447-2450

    We evaluate the performance of a sub-optimum optical phase estimator obtained using a state variable description of the optical channel and stochastic estimation techniques. We implement the estimator for an urban wireless communications network.

  • Anti-Interference Receiver Structures for Direct Sequence Spread Spectrum Signals

    Li-Der JENG  Fang-Biau UENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1103-1111

    Conventional narrowband interference (NBI) rejection algorithms often assumed perfect pseudo-noise (PN) code synchronization. The functions of NBI rejection and code tracking are performed separately and independently by an adaptive filter and a code tracking loop, respectively. This paper presents two new receiver structures for direct sequence spread spectrum (DS/SS) systems, one operates in coherent mode and the other operates in noncoherent mode. Both receivers are designed to suppress NBI and minimize tracking jitter. Numerical results show that the proposed coherent receiver performs as good as the conventional receiver that uses an LMS NBI rejection filter with zero tracking jitter. The noncoherent receiver, when compared with the coherent one, suffers less than 3 dB degradation for bit error probability smaller than 10-3.

  • Restorability of Rayleigh Backscatter Traces Measured by Coherent OTDR with Precisely Frequency-Controlled Light Source

    Mutsumi IMAHAMA  Yahei KOYAMADA  Kazuo HOGARI  

     
    LETTER-Sensing

      Vol:
    E91-B No:4
      Page(s):
    1243-1246

    This letter presents the first experimental results that confirm the restorability of Rayleigh backscatter traces from a single-mode fiber measured by using a coherent optical time domain reflectometer (OTDR) with a precisely frequency-controlled light source. Based on this restorability, we can measure the distributed strain and temperature along the fiber with a very high measurand resolution that is one to two orders of magnitude better than that provided by Brillouin-based techniques for a long length of fiber.

  • Effective Echo Detection and Accurate Orbit Estimation Algorithms for Space Debris Radar

    Kentaro ISODA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E91-B No:3
      Page(s):
    887-895

    Orbit estimation of space debris, objects of no inherent value orbiting the earth, is a task that is important for avoiding collisions with spacecraft. The Kamisaibara Spaceguard Center radar system was built in 2004 as the first radar facility in Japan devoted to the observation of space debris. In order to detect the smaller debris, coherent integration is effective in improving SNR (Signal-to-Noise Ratio). However, it is difficult to apply coherent integration to real data because the motions of the targets are unknown. An effective algorithm is proposed for echo detection and orbit estimation of the faint echoes from space debris. The characteristics of the evaluation function are utilized by the algorithm. Experiments show the proposed algorithm improves SNR by 8.32 dB and enables estimation of orbital parameters accurately to allow for re-tracking with a single radar.

  • Scattering of TM Plane Wave from Periodic Grating with Single Defect

    Kazuhiro HATTORI  Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E91-C No:1
      Page(s):
    17-25

    This paper deals with the scattering of a TM plane wave from a periodic grating with single defect, of which position is known. The surface is perfectly conductive and made up with a periodic array of rectangular grooves and a defect where a groove is not formed. The scattered wave above grooves is written as a variation from the diffracted wave for the perfectly periodic case. Then, an integral equation for the scattering amplitude is obtained, which is solved numerically by use of truncation and the iteration method. The differential scattering cross section and the optical theorem are calculated in terms of the scattering amplitude and are illustrated in figures. It is found that incoherent Wood's anomaly appears at critical angles of scattering. The physical mechanisms of Wood's anomaly and incoherent Wood's anomaly are discussed in relation to the guided surface wave excited by the incident plane wave. It is concluded that incoherent Wood's anomaly is caused by the diffraction of the guided surface wave.

  • Frequency Offset Estimation with Semi-Coherent Accumulation for CDMA Receivers

    Jungwoo LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    372-375

    A semi-coherent technique for low-complexity frequency offset estimation is presented. The proposed estimation is based on discrete-time Fourier transform (DTFT). Since residual frequency offset can be compensated by channel estimation, frequency offset can be estimated only coarsely. We take advantage of the relationship between frequency resolution and accumulation period in DTFT in deriving the coarse estimator. Based on that, a novel method to balance the coherent and the non-coherent accumulation for frequency offset estimation is proposed. The proposed algorithm has low latency and complexity so that it is particularly suitable for packet traffic. The semi-coherent structure of the proposed algorithm is also scalable so that it can be used for both bursty and continuous traffic.

  • Improvement of Coherent Ultrashort Light Pulse CDMA Communication Systems with Distinct 4-Level m-Sequences

    Yasutaka IGARASHI  Ippei OKAJIMA  Hiroyuki YASHIMA  

     
    PAPER

      Vol:
    E89-A No:11
      Page(s):
    3018-3025

    Optical fiber communications require multiple-access schemes to access a shared channel among multiple users. The coherent ultrashort light pulse code-division multiple-access (CDMA) system is one such scheme, and it also offers asynchronous-access communication. This system usually employs 2-level, i.e., binary, m-sequences as signature codes because of their low correlation. If the number of active users is greater than the length of the m-sequence, i.e., code length, distinct m-sequences are used. However, the distinct 2-level m-sequences do not exhibit low correlation, resulting in performance degradation. We therefore propose a coherent ultrashort light pulse CDMA communication system with distinct 4-level, i.e., quaternary, m-sequences to improve system performance when the number of users is greater than the code length. We created the 4-level m-sequences from 2-level m-sequences, and assess the correlation of the 4-level m-sequences. We also theoretically derive the bit error rate (BER) of the proposed system taking into account multiple-access interference (MAI), beat noise, amplified spontaneous emission (ASE), shot noise, and thermal noise. The numerical results show that BER for distinct 4-level m-sequences is more than an order of magnitude smaller than that for distinct 2-level m-sequences. BER is limited by MAI and beat noise when the power of the received signal is high, otherwise BER is limited by ASE, shot noise, and thermal noise.

  • Khatri-Rao Unitary Space-Time Modulation

    Lei WANG  Shihua ZHU  Jun WANG  Yanxing ZENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2530-2536

    Based on the Khatri-Rao matrix product, we propose a novel unitary space-time modulation design called KR-USTM in this paper. Different from existing USTM schemes, such as the systematic approach and space-time frequency-shift keying (ST-FSK), KR-USTM does not require any computer search and can be applied to any number of transmit antennas. Moreover, the special structure of KR-USTM also makes it a high-rate scheme and achieve full antenna diversity as well as lower decoding complexity. Simulation results show that the proposed KR-USTM constellation achieves error performance comparable to existing USTM designs at low rates, while it outperforms them at high rates.

  • A Novel Ranging Method using Energy Window Bank in Non-coherent UWB Systems

    Woon-Yong PARK  Won-Cheol LEE  Sungsoo CHOI  Kwan-Ho KIM  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1766-1770

    This paper proposes a novel UWB ranging scheme employing 1-bit ADCs and analog window bank for energy collection. For an appropriate 1-bit ADC process DC offset is exploited and removed via performing analog low pass filter. To improve ranging accuracy in presence of ambiguity, dual overlapped window banks designated as primary and auxiliary windows are utilized. Corresponding to the proposed ranging scheme, its performance is verified by conducting simulations in two types of channel conditions. The simulation results show that the proposed ranging scheme performs well even in condensed multipath environment and low SNR situation.

  • Performance Analysis of Coherent Ultrashort Light Pulse CDMA Communication Systems with Nonlinear Optical Thresholder

    Yasutaka IGARASHI  Hiroyuki YASHIMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E89-B No:4
      Page(s):
    1205-1213

    We theoretically analyze the performance of coherent ultrashort light pulse code-division multiple-access (CDMA) communication systems with a nonlinear optical thresholder. The coherent ultrashort light pulse CDMA is a promising system for an optical local area network (LAN) due to its advantages of asynchronous transmission, high information security, multiple access capability, and optical processing. The nonlinear optical thresholder is based on frequency chirping induced by self-phase modulation (SPM) in optical fiber, and discriminates an ultrashort pulse from multiple access interference (MAI) with picosecond duration. The numerical results show that the thermal noise caused in a photodetector dominates the bit error rate (BER). BER decreases as the fiber length in the nonlinear thresholder and the photocurrent difference in the photodetector increase. Using the nonlinear optical thresholder allows for the response time of the photodetector to be at least 100 times the duration of the ultrashort pulses. We also show that the optimum cut-off frequency at the nonlinear thresholder to achieve the minimum BER increases with fiber length, the total number of users, and the load resistance in the photodetector.

  • Performance of 2IMO Differentially Transmit-Diversity Block Coded OFDM Systems in Time-Varying Multipath Rayleigh Fading Channels

    Ping-Hung CHIANG  Ding-Bing LIN  Hsueh-Jyh LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:2
      Page(s):
    518-530

    By applying the differential space-time block code (DSTBC) to wireless multicarrier transmission, Diggavi et al. were the first to propose the two-input-multiple-output (2IMO) differentially space-time-time block coded OFDM (TT-OFDM) system. In this paper, we propose three novel differentially transmit-diversity block coded OFDM (DTDBC-OFDM) systems, namely, the FT-, FF-, and TF-OFDM systems. For instance, the TF-OFDM stands for the differentially space-time-frequency block coded OFDM. Moreover, the noncoherent maximum-likelihood sequence detector (NSD), and its three special cases, namely, the noncoherent one-shot detector, the linearly predictive decision-feedback (DF) detector, and the linearly predictive Viterbi receiver are incorporated to the 2IMO DTDBC-OFDM systems. Furthermore, a simple closed-form BER expression for the systems utilizing the noncoherent one-shot detector in the time-varying multipath Rayleigh fading channels is given. Numerical results have revealed that 2IMO DTDBC-OFDM systems employing the noncoherent one-shot detector can obtain significant performance improvement. However, when few antennas are available, the implementation of the linearly predictive DF detector or the linearly predictive Viterbi receiver is necessary for achieving better performance.

  • Four-Branch Open-Loop Transmit Diversity Based on STBC Group-Coherent Codes for OFDM-CDM Systems

    Masaaki FUJII  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    231-234

    This letter describes four-branch open-loop transmit diversity schemes that are based on group-coherent codes using space-time block codes (STBC-GCC), for orthogonal frequency-division multiplexing and code-division multiplexing (OFDM-CDM) systems. Open-loop STBC-GCC is designed for transmitting control data by two-dimensional spreading, which is achieved by applying two distinct Walsh-Hadamard (WH) codes within the same mother-code group to two different groups of transmit antennas. The simulation results demonstrated that open-loop STBC-GCC applied to two-dimensional spreading provides space diversity gains and frequency diversity gains. It can therefore be concluded that open-loop STBC-GCC is suitable for transmitting common control data or broadcast data via two-dimensional spreading OFDM-CDM.

  • An Efficient Software-Defined Radio Architecture for Multi-Mode WCDMA Applications

    Jaesang LIM  Yongchul SONG  Jeongpyo KIM  Beomsup KIM  

     
    LETTER-General Fundamentals and Boundaries

      Vol:
    E88-A No:12
      Page(s):
    3677-3680

    This letter describes an efficient architecture for a Software Defined Radio (SDR) Wideband Code Division Multiple Access (WCDMA) receiver using for high performance wireless communication systems. The architecture is composed of a Radio Frequency (RF) front-end, an Analog-to-Digital Converter (ADC), and a Quadrature Amplitude Modulation (QAM) demodulator. A coherent demodulator, with a complete digital synchronization scheme, achieves the bit-error rate (BER) of 10-6 with the implementation loss of 0.5 dB for a raw Quadrature Phase Shift King (QPSK) signal.

  • Noncoherent Block Detection of Multiple-Pulse Equicorrelated Modulation Signals

    Char-Dir CHUNG  Shih-Ming CHO  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E88-B No:12
      Page(s):
    4558-4569

    In this paper, a multiple-pulse signaling format for M-ary equicorrelated modulation (ECM) is proposed to enable the noncoherent detection on a multiple-symbol basis. Several time-limited and band-limited basis waveform sets are designed to embody the multiple-pulse ECM signals and explored to determine the spectral performance characteristics. Based on the maximum-likelihood decision principle, a block receiver is developed for noncoherently demodulating multiple-pulse ECM signals on additive white Gaussian noise channels. Tight upper and approximate bounds are derived and verified by simulation to evaluate the bit and symbol error probability characteristics of the developed ECM block receiver. It is analytically shown that the noncoherent M-ary ECM block receiver with a small-sized blocklength offers comparable performance to the ideal coherent M-ary simplex receiver when the pairwise signal correlation is appropriately chosen. In particular, the proposed noncoherent nonbinary simplex modulation is found to strongly outperform the conventional noncoherent nonbinary orthogonal modulation in terms of both power and spectral efficiencies.

  • Estimation of Short Range Multiple Coherent Source Location by Using MUSIC Algorithm

    Takashi KATO  Kazumasa TAIRA  Kunio SAWAYA  Risaburo SATO  

     
    LETTER

      Vol:
    E88-B No:8
      Page(s):
    3317-3320

    An estimation method of source location of undesired electromagnetic wave from electronic devices by using the MUSIC algorithm is proposed. The MUSIC algorithm can estimate the direction of arrival accurately, however, the estimation error is large in the case of short range multiple coherent sources. In order to overcome this problem, a method to improve the estimation accuracy is presented. Experimental results show that the proposed method can reduce the maximum estimation error from 7 cm of the conventional method to 2 cm.

  • Direction-of-Arrival Estimation of Coherent Signals Using a Cylindrical Array

    Masaki TAKANASHI  Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:6
      Page(s):
    2588-2596

    Mainly, a uniform linear array (ULA) has been used for DOA estimation of coherent signals because we can apply the spatial smoothing preprocessing (SSP) technique. However, estimation by a ULA has ambiguity due to the symmetry, and the estimation accuracy depends on the DOA. Although these problems can be solved by using a uniform circular array (UCA), we cannot estimate the DOA of coherent signals because the SSP technique cannot be applied directly to the UCA. In this paper, we propose to estimate 2-dimensional DOA (polar angles and azimuth angles) estimation of coherent signals using a cylindrical array which is composed of stacked UCAs.

  • A Generalized Performance Study of DS-CDMA Uplink/Downlink Receivers in Nakagami Wideband Fading Channel

    Mohammed ABDEL-HAFEZ  Fatih ALAGOZ  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E88-B No:1
      Page(s):
    333-344

    In this paper, we consider a mobile system consisting of a single isolated circular cell with K independent users simultaneously sharing the channel using binary DS-CDMA to establish a full duplex channel with the base station. Both coherent and differential detection RAKE receivers with Maximal Ratio Combining (MRC) techniques are considered. The performance of two uplink/downlink receivers in Nakagami wideband fading channel is studied. Our approach relies on the use of total instantaneous interference power calculations instead of the use of average power approximations. We analyzed and derived new exact formulae for bit error probabilities for the considered system, and presented a set of numerical results both for the exact formulae and Gaussian approximation. The performance comparisons suggest that the exact formulae provide superior performance to Gaussian approximation especially at low number of users and either high fading parameters of the desired user or low fading parameters of the MAIs.

  • TLB Update-Hint: A Scalable TLB Consistency Algorithm for Cache-Coherent Non-uniform Memory Access Multiprocessors

    Byeonghag SEONG  Donggook KIM  Yangwoo ROH  Kyuho PARK  Daeyeon PARK  

     
    PAPER-Networking and System Architectures

      Vol:
    E87-D No:7
      Page(s):
    1682-1692

    Shared memory multiprocessors in which each processor has its own TLB must manage consistency among TLBs and a page table. As the large-scale CC-NUMA (cache-coherent non-uniform memory access) shared memory multiprocessors become popular, it is important for TLB consistency management algorithms to be highly scalable. In this paper, we propose a TLB update-hint algorithm as a scalable TLB consistency management solution for CC-NUMA multiprocessors. By using a lazy TLB invalidation approach, we reduced the number of unnecessary processor interruptions and idle-waiting time, and achieved a high level of scalability. Using a shared memory simulator, we evaluated the TLB update-hint algorithm. For performance comparison, we also simulated the TLB shootdown algorithm, one of the most popular TLB consistency algorithms. The simulations demonstrated that the TLB update-hint algorithm scales well in systems with a large number of processors. At 64 node systems, the TLB update-hint algorithm shows 4787% better performance than the TLB shootdown algorithm.

  • Adaptive Beamforming to Overcome Coherent Interferences and Steering Errors

    Jin-Hee JO  Sung-Hoon MOON  Dong-Seog HAN  Myeong-Je CHO  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:4
      Page(s):
    873-879

    A sequentially and linearly constrained minimum variance beamformer (SLCMV), based on a split polarity transformation (SPT) and, called an SPT-SLCMV beamformer, is proposed to minimize the degree of freedom loss, steering error, and a desired signal elimination phenomenon under coherent interferences. The SPT-SLCMV beamformer reduces the degree of freedom loss, which is inevitable in the conventional SPT-LCMV beamformer, by successively applying sub-constraint matrices. Sub-constraint matrices are derived from a complete constraint matrix to remove the correlation between the desired signal and interferences. In addition, the SPT-SLCMV beamformer is combined with the iterative steering error correction method to reduce the steering error between the look direction of the beamformer and the incident angle of the desired signal. As a result, the proposed beamformer reduces the number of array elements while maintaining the performance of an exactly steered SPT-LCMV beamformer having sufficient array elements under coherent interferences.

81-100hit(160hit)