The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] composition(334hit)

1-20hit(334hit)

  • Convergence Characteristics of Domain Decomposition Method for Full-Wave Electromagnetic Analysis Open Access

    Toshio MURAYAMA  Amane TAKEI  

     
    PAPER

      Pubricized:
    2024/07/23
      Vol:
    E107-C No:11
      Page(s):
    465-471

    A domain decomposition method is widely utilized for analyzing large-scale electromagnetic problems. The method decomposes the target model into small independent subdomains. An electromagnetic analysis has inherently suffers from late convergence analyzed with iterative algorithms such as Krylov subspace algorithms. The DDM remedies this issue by decomposing the total system into subdomain problems and gathering the local results as an interface problem to adjust to achieve the total solution. In this paper we report the convergence properties of the domain decomposition method while modifying the size of local domain and the region shape on several mesh sizes. As experimental results show, the convergence speed depends on the number of interface problem variables and the selection of the local region shapes. In addition to that the convergence property differs according to the target frequencies. In general it is demonstrated that the convergence speed can be accelerated with large cubic subdomain shape. We propose the subdomain selection strategies based on the analysis of the condition numbers of the governing equation.

  • DETrack: Multi-Object Tracking Algorithm Based on Feature Decomposition and Feature Enhancement Open Access

    Feng WEN  Haixin HUANG  Xiangyang YIN  Junguang MA  Xiaojie HU  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2024/04/22
      Vol:
    E107-A No:9
      Page(s):
    1522-1533

    Multi-object tracking (MOT) algorithms are typically classified as one-shot or two-step algorithms. The one-shot MOT algorithm is widely studied and applied due to its fast inference speed. However, one-shot algorithms include two sub-tasks of detection and re-ID, which have conflicting directions for model optimization, thus limiting tracking performance. Additionally, MOT algorithms often suffer from serious ID switching issues, which can negatively affect the tracking effect. To address these challenges, this study proposes the DETrack algorithm, which consists of feature decomposition and feature enhancement modules. The feature decomposition module can effectively exploit the differences and correlations of different tasks to solve the conflict problem. Moreover, it can effectively mitigate the competition between the detection and re-ID tasks, while simultaneously enhancing their cooperation. The feature enhancement module can improve feature quality and alleviate the problem of target ID switching. Experimental results demonstrate that DETrack has achieved improvements in multi-object tracking performance, while reducing the number of ID switching. The designed method of feature decomposition and feature enhancement can significantly enhance target tracking effectiveness.

  • Improved Source Localization Method of the Small-Aperture Array Based on the Parasitic Fly’s Coupled Ears and MUSIC-Like Algorithm Open Access

    Hongbo LI  Aijun LIU  Qiang YANG  Zhe LYU  Di YAO  

     
    LETTER-Noise and Vibration

      Pubricized:
    2023/12/08
      Vol:
    E107-A No:8
      Page(s):
    1355-1359

    To improve the direction-of-arrival estimation performance of the small-aperture array, we propose a source localization method inspired by the Ormia fly’s coupled ears and MUSIC-like algorithm. The Ormia can local its host cricket’s sound precisely despite the tremendous incompatibility between the spacing of its ear and the sound wavelength. In this paper, we first implement a biologically inspired coupled system based on the coupled model of the Ormia’s ears and solve its responses by the modal decomposition method. Then, we analyze the effect of the system on the received signals of the array. Research shows that the system amplifies the amplitude ratio and phase difference between the signals, equivalent to creating a virtual array with a larger aperture. Finally, we apply the MUSIC-like algorithm for DOA estimation to suppress the colored noise caused by the system. Numerical results demonstrate that the proposed method can improve the localization precision and resolution of the array.

  • Functional Decomposition of Symmetric Multiple-Valued Functions and Their Compact Representation in Decision Diagrams Open Access

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:8
      Page(s):
    922-929

    This paper proposes a decomposition method for symmetric multiple-valued functions. It decomposes a given symmetric multiple-valued function into three parts. By using suitable decision diagrams for the three parts, we can represent symmetric multiple-valued functions compactly. By deriving theorems on sizes of the decision diagrams, this paper shows that space complexity of the proposed representation is low. This paper also presents algorithms to construct the decision diagrams for symmetric multiple-valued functions with low time complexity. Experimental results show that the proposed method represents randomly generated symmetric multiple-valued functions more compactly than the conventional representation method using standard multiple-valued decision diagrams. Symmetric multiple-valued functions are a basic class of functions, and thus, their compact representation benefits many applications where they appear.

  • Investigating the Efficacy of Partial Decomposition in Kit-Build Concept Maps for Reducing Cognitive Load and Enhancing Reading Comprehension Open Access

    Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2024/01/11
      Vol:
    E107-D No:5
      Page(s):
    714-727

    This study investigates the efficacy of a partial decomposition approach in concept map recomposition tasks to reduce cognitive load while maintaining the benefits of traditional recomposition approaches. Prior research has demonstrated that concept map recomposition, involving the rearrangement of unconnected concepts and links, can enhance reading comprehension. However, this task often imposes a significant burden on learners’ working memory. To address this challenge, this study proposes a partial recomposition approach where learners are tasked with recomposing only a portion of the concept map, thereby reducing the problem space. The proposed approach aims at lowering the cognitive load while maintaining the benefits of traditional recomposition task, that is, learning effect and motivation. To investigate the differences in cognitive load, learning effect, and motivation between the full decomposition (the traditional approach) and partial decomposition (the proposed approach), we have conducted an experiment (N=78) where the participants were divided into two groups of “full decomposition” and “partial decomposition”. The full decomposition group was assigned the task of recomposing a concept map from a set of unconnected concept nodes and links, while the partial decomposition group worked with partially connected nodes and links. The experimental results show a significant reduction in the embedded cognitive load of concept map recomposition across different dimensions while learning effect and motivation remained similar between the conditions. On the basis of these findings, educators are recommended to incorporate partially disconnected concept maps in recomposition tasks to optimize time management and sustain learner motivation. By implementing this approach, instructors can conserve cognitive resources and allocate saved energy and time to other activities that enhance the overall learning process.

  • Joint DOA and DOD Estimation Using KR-MUSIC for Overloaded Target in Bistatic MIMO Radars Open Access

    Chih-Chang SHEN  Jia-Sheng LI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/08/07
      Vol:
    E107-A No:4
      Page(s):
    675-679

    This letter deals with the joint direction of arrival and direction of departure estimation problem for overloaded target in bistatic multiple-input multiple-output radar system. In order to achieve the purpose of effective estimation, the presented Khatri-Rao (KR) MUSIC estimator with the ability to handle overloaded targets mainly combines the subspace characteristics of the target reflected wave signal and the KR product based on the array response. This letter also presents a computationally efficient KR noise subspace projection matrix estimation technique to reduce the computational load due to perform high-dimensional singular value decomposition. Finally, the effectiveness of the proposed method is verified by computer simulation.

  • Why the Controversy over Displacement Currents never Ends? Open Access

    Masao KITANO  

     
    PAPER

      Pubricized:
    2023/10/27
      Vol:
    E107-C No:4
      Page(s):
    82-90

    Displacement current is the last piece of the puzzle of electromagnetic theory. Its existence implies that electromagnetic disturbance can propagate at the speed of light and finally it led to the discovery of Hertzian waves. On the other hand, since magnetic fields can be calculated only with conduction currents using Biot-Savart's law, a popular belief that displacement current does not produce magnetic fields has started to circulate. But some people think if this is correct, what is the displacement current introduced for. The controversy over the meaning of displacement currents has been going on for more than hundred years. Such confusion is caused by forgetting the fact that in the case of non-stationary currents, neither magnetic fields created by conduction currents nor those created by displacement currents can be defined. It is also forgotten that the effect of displacement current is automatically incorporated in the magnetic field calculated by Biot-Savart's law. In this paper, mainly with the help of Helmholtz decomposition, we would like to clarify the confusion surrounding displacement currents and provide an opportunity to end the long standing controversy.

  • DanceUnisoner: A Parametric, Visual, and Interactive Simulation Interface for Choreographic Composition of Group Dance

    Shuhei TSUCHIDA  Satoru FUKAYAMA  Jun KATO  Hiromu YAKURA  Masataka GOTO  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2023/11/27
      Vol:
    E107-D No:3
      Page(s):
    386-399

    Composing choreography is challenging because it involves numerous iterative refinements. According to our video analysis and interviews, choreographers typically need to imagine dancers' movements to revise drafts on paper since testing new movements and formations with actual dancers takes time. To address this difficulty, we present an interactive group-dance simulation interface, DanceUnisoner, that assists choreographers in composing a group dance in a simulated environment. With DanceUnisoner, choreographers can arrange excerpts from solo-dance videos of dancers throughout a three-dimensional space. They can adjust various parameters related to the dancers in real time, such as each dancer's position and size and each movement's timing. To evaluate the effectiveness of the system's parametric, visual, and interactive interface, we asked seven choreographers to use it and compose group dances. Our observations, interviews, and quantitative analysis revealed their successful usage in iterative refinements and visual checking of choreography, providing insights to facilitate further computational creativity support for choreographers.

  • CCTSS: The Combination of CNN and Transformer with Shared Sublayer for Detection and Classification

    Aorui GOU  Jingjing LIU  Xiaoxiang CHEN  Xiaoyang ZENG  Yibo FAN  

     
    PAPER-Image

      Pubricized:
    2023/07/06
      Vol:
    E107-A No:1
      Page(s):
    141-156

    Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable performance in detection and classification tasks. Nevertheless, their feature extraction cannot consider both local and global information, so the detection and classification performance can be further improved. In addition, more and more deep learning networks are designed as more and more complex, and the amount of computation and storage space required is also significantly increased. This paper proposes a combination of CNN and transformer, and designs a local feature enhancement module and global context modeling module to enhance the cascade network. While the local feature enhancement module increases the range of feature extraction, the global context modeling is used to capture the feature maps' global information. To decrease the model complexity, a shared sublayer is designed to realize the sharing of weight parameters between the adjacent convolutional layers or cross convolutional layers, thereby reducing the number of convolutional weight parameters. Moreover, to effectively improve the detection performance of neural networks without increasing network parameters, the optimal transport assignment approach is proposed to resolve the problem of label assignment. The classification loss and regression loss are the summations of the cost between the demander and supplier. The experiment results demonstrate that the proposed Combination of CNN and Transformer with Shared Sublayer (CCTSS) performs better than the state-of-the-art methods in various datasets and applications.

  • Decomposition of P6-Free Chordal Bipartite Graphs

    Asahi TAKAOKA  

     
    LETTER-Graphs and Networks

      Pubricized:
    2023/05/17
      Vol:
    E106-A No:11
      Page(s):
    1436-1439

    Canonical decomposition for bipartite graphs, which was introduced by Fouquet, Giakoumakis, and Vanherpe (1999), is a decomposition scheme for bipartite graphs associated with modular decomposition. Weak-bisplit graphs are bipartite graphs totally decomposable (i.e., reducible to single vertices) by canonical decomposition. Canonical decomposition comprises series, parallel, and K+S decomposition. This paper studies a decomposition scheme comprising only parallel and K+S decomposition. We show that bipartite graphs totally decomposable by this decomposition are precisely P6-free chordal bipartite graphs. This characterization indicates that P6-free chordal bipartite graphs can be recognized in linear time using the recognition algorithm for weak-bisplit graphs presented by Giakoumakis and Vanherpe (2003).

  • Prior Information Based Decomposition and Reconstruction Learning for Micro-Expression Recognition

    Jinsheng WEI  Haoyu CHEN  Guanming LU  Jingjie YAN  Yue XIE  Guoying ZHAO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/07/13
      Vol:
    E106-D No:10
      Page(s):
    1752-1756

    Micro-expression recognition (MER) draws intensive research interest as micro-expressions (MEs) can infer genuine emotions. Prior information can guide the model to learn discriminative ME features effectively. However, most works focus on researching the general models with a stronger representation ability to adaptively aggregate ME movement information in a holistic way, which may ignore the prior information and properties of MEs. To solve this issue, driven by the prior information that the category of ME can be inferred by the relationship between the actions of facial different components, this work designs a novel model that can conform to this prior information and learn ME movement features in an interpretable way. Specifically, this paper proposes a Decomposition and Reconstruction-based Graph Representation Learning (DeRe-GRL) model to efectively learn high-level ME features. DeRe-GRL includes two modules: Action Decomposition Module (ADM) and Relation Reconstruction Module (RRM), where ADM learns action features of facial key components and RRM explores the relationship between these action features. Based on facial key components, ADM divides the geometric movement features extracted by the graph model-based backbone into several sub-features, and learns the map matrix to map these sub-features into multiple action features; then, RRM learns weights to weight all action features to build the relationship between action features. The experimental results demonstrate the effectiveness of the proposed modules, and the proposed method achieves competitive performance.

  • A QR Decomposition Algorithm with Partial Greedy Permutation for Zero-Forcing Block Diagonalization

    Shigenori KINJO  Takayuki GAMOH  Masaaki YAMANAKA  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/10/18
      Vol:
    E106-A No:4
      Page(s):
    665-673

    A new zero-forcing block diagonalization (ZF-BD) scheme that enables both a more simplified ZF-BD and further increase in sum rate of MU-MIMO channels is proposed in this paper. The proposed scheme provides the improvement in BER performance for equivalent SU-MIMO channels. The proposed scheme consists of two components. First, a permuted channel matrix (PCM), which is given by moving the submatrix related to a target user to the bottom of a downlink MIMO channel matrix, is newly defined to obtain a precoding matrix for ZF-BD. Executing QR decomposition alone for a given PCM provides null space for the target user. Second, a partial MSQRD (PMSQRD) algorithm, which adopts MSQRD only for a target user to provide improvement in bit rate and BER performance for the user, is proposed. Some numerical simulations are performed, and the results show improvement in sum rate performance of the total system. In addition, appropriate bit allocation improves the bit error rate (BER) performance in each equivalent SU-MIMO channel. A successive interference cancellation is applied to achieve further improvement in BER performance of user terminals.

  • Multi-Input Physical Layer Network Coding in Two-Dimensional Wireless Multihop Networks

    Hideaki TSUGITA  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    193-202

    This paper proposes multi-input physical layer network coding (multi-input PLNC) for high speed wireless communication in two-dimensional wireless multihop networks. In the proposed PLNC, all the terminals send their packets simultaneously for the neighboring relays to maximize the network throughput in the first slot, and all the relays also do the same to the neighboring terminals in the second slot. Those simultaneous signal transmissions cause multiple signals to be received at the relays and the terminals. Signal reception in the multi-input PLNC uses multichannel filtering to mitigate the difficulties caused by the multiple signal reception, which enables the two-input PLNC to be applied. In addition, a non-linear precoding is proposed to reduce the computational complexity of the signal detection at the relays and the terminals. The proposed multi-input PLNC makes all the terminals exchange their packets with the neighboring terminals in only two time slots. The performance of the proposed multi-input PLNC is confirmed by computer simulation. The proposed multi-input physical layer network coding achieves much higher network throughput than conventional techniques in a two-dimensional multihop wireless network with 7 terminals. The proposed multi-input physical layer network coding attains superior transmission performance in wireless hexagonal multihop networks, as long as more than 6 antennas are placed on the terminals and the relays.

  • Orthogonal Deep Feature Decomposition Network for Cross-Resolution Person Re-Identification

    Rui SUN  Zi YANG  Lei ZHANG  Yiheng YU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/08/23
      Vol:
    E105-D No:11
      Page(s):
    1994-1997

    Person images captured by surveillance cameras in real scenes often have low resolution (LR), which suffers from severe degradation in recognition performance when matched with pre-stocked high-resolution (HR) images. There are existing methods which typically employ super-resolution (SR) techniques to address the resolution discrepancy problem in person re-identification (re-ID). However, SR techniques are intended to enhance the human eye visual fidelity of images without caring about the recovery of pedestrian identity information. To cope with this challenge, we propose an orthogonal depth feature decomposition network. And we decompose pedestrian features into resolution-related features and identity-related features who are orthogonal to each other, from which we design the identity-preserving loss and resolution-invariant loss to ensure the recovery of pedestrian identity information. When compared with the SOTA method, experiments on the MLR-CUHK03 and MLR-VIPeR datasets demonstrate the superiority of our method.

  • Low-Complexity Hybrid Precoding Based on PAST for Millimeter Wave Massive MIMO System Open Access

    Rui JIANG  Xiao ZHOU  You Yun XU  Li ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/21
      Vol:
    E105-B No:10
      Page(s):
    1192-1201

    Millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems generally adopt hybrid precoding combining digital and analog precoder as an alternative to full digital precoding to reduce RF chains and energy consumption. In order to balance the relationship between spectral efficiency, energy efficiency and hardware complexity, the hybrid-connected system structure should be adopted, and then the solution process of hybrid precoding can be simplified by decomposing the total achievable rate into several sub-rates. However, the singular value decomposition (SVD) incurs high complexity in calculating the optimal unconstrained hybrid precoder for each sub-rate. Therefore, this paper proposes PAST, a low complexity hybrid precoding algorithm based on projection approximate subspace tracking. The optimal unconstrained hybrid precoder of each sub-rate is estimated with the PAST algorithm, which avoids the high complexity process of calculating the left and right singular vectors and singular value matrix by SVD. Simulations demonstrate that PAST matches the spectral efficiency of SVD-based hybrid precoding in full-connected (FC), hybrid-connected (HC) and sub-connected (SC) system structure. Moreover, the superiority of PAST over SVD-based hybrid precoding in terms of complexity and increases with the number of transmitting antennas.

  • Efficient Computation of Betweenness Centrality by Graph Decompositions and Their Applications to Real-World Networks

    Tatsuya INOHA  Kunihiko SADAKANE  Yushi UNO  Yuma YONEBAYASHI  

     
    PAPER

      Pubricized:
    2021/11/08
      Vol:
    E105-D No:3
      Page(s):
    451-458

    Betweenness centrality is one of the most significant and commonly used centralities, where centrality is a notion of measuring the importance of nodes in networks. In 2001, Brandes proposed an algorithm for computing betweenness centrality efficiently, and it can compute those values for all nodes in O(nm) time for unweighted networks, where n and m denote the number of nodes and links in networks, respectively. However, even Brandes' algorithm is not fast enough for recent large-scale real-world networks, and therefore, much faster algorithms are expected. The objective of this research is to theoretically improve the efficiency of Brandes' algorithm by introducing graph decompositions, and to verify the practical effectiveness of our approaches by implementing them as computer programs and by applying them to various kinds of real-world networks. A series of computational experiments shows that our proposed algorithms run several times faster than the original Brandes' algorithm, which are guaranteed by theoretical analyses.

  • SimpleZSL: Extremely Simple and Fast Zero-Shot Learning with Nearest Neighbor Classifiers

    Masayuki HIROMOTO  Hisanao AKIMA  Teruo ISHIHARA  Takuji YAMAMOTO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2021/10/29
      Vol:
    E105-D No:2
      Page(s):
    396-405

    Zero-shot learning (ZSL) aims to classify images of unseen classes by learning relationship between visual and semantic features. Existing works have been improving recognition accuracy from various approaches, but they employ computationally intensive algorithms that require iterative optimization. In this work, we revisit the primary approach of the pattern recognition, ı.e., nearest neighbor classifiers, to solve the ZSL task by an extremely simple and fast way, called SimpleZSL. Our algorithm consists of the following three simple techniques: (1) just averaging feature vectors to obtain visual prototypes of seen classes, (2) calculating a pseudo-inverse matrix via singular value decomposition to generate visual features of unseen classes, and (3) inferring unseen classes by a nearest neighbor classifier in which cosine similarity is used to measure distance between feature vectors. Through the experiments on common datasets, the proposed method achieves good recognition accuracy with drastically small computational costs. The execution time of the proposed method on a single CPU is more than 100 times faster than those of the GPU implementations of the existing methods with comparable accuracies.

  • A Robust Canonical Polyadic Tensor Decomposition via Structured Low-Rank Matrix Approximation

    Riku AKEMA  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/06/23
      Vol:
    E105-A No:1
      Page(s):
    11-24

    The Canonical Polyadic Decomposition (CPD) is the tensor analog of the Singular Value Decomposition (SVD) for a matrix and has many data science applications including signal processing and machine learning. For the CPD, the Alternating Least Squares (ALS) algorithm has been used extensively. Although the ALS algorithm is simple, it is sensitive to a noise of a data tensor in the applications. In this paper, we propose a novel strategy to realize the noise suppression for the CPD. The proposed strategy is decomposed into two steps: (Step 1) denoising the given tensor and (Step 2) solving the exact CPD of the denoised tensor. Step 1 can be realized by solving a structured low-rank approximation with the Douglas-Rachford splitting algorithm and then Step 2 can be realized by solving the simultaneous diagonalization of a matrix tuple constructed by the denoised tensor with the DODO method. Numerical experiments show that the proposed algorithm works well even in typical cases where the ALS algorithm suffers from the so-called bottleneck/swamp effect.

  • Influence of Access to Reading Material during Concept Map Recomposition in Reading Comprehension and Retention

    Pedro GABRIEL FONTELES FURTADO  Tsukasa HIRASHIMA  Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  

     
    PAPER-Educational Technology

      Pubricized:
    2021/08/02
      Vol:
    E104-D No:11
      Page(s):
    1941-1950

    This study investigated the influence of reading time while building a closed concept map on reading comprehension and retention. It also investigated the effect of having access to the text during closed concept map creation on reading comprehension and retention. Participants from Amazon Mechanical Turk (N =101) read a text, took an after-text test, and took part in one of three conditions, “Map & Text”, “Map only”, and “Double Text”, took an after-activity test, followed by a two-week retention period and then one final delayed test. Analysis revealed that higher reading times were associated with better reading comprehension and better retention. Furthermore, when comparing “Map & Text” to the “Map only” condition, short-term reading comprehension was improved, but long-term retention was not improved. This suggests that having access to the text while building closed concept maps can improve reading comprehension, but long term learning can only be improved if students invest time accessing both the map and the text.

  • Health Indicator Estimation by Video-Based Gait Analysis

    Ruochen LIAO  Kousuke MORIWAKI  Yasushi MAKIHARA  Daigo MURAMATSU  Noriko TAKEMURA  Yasushi YAGI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/09
      Vol:
    E104-D No:10
      Page(s):
    1678-1690

    In this study, we propose a method to estimate body composition-related health indicators (e.g., ratio of body fat, body water, and muscle, etc.) using video-based gait analysis. This method is more efficient than individual measurement using a conventional body composition meter. Specifically, we designed a deep-learning framework with a convolutional neural network (CNN), where the input is a gait energy image (GEI) and the output consists of the health indicators. Although a vast amount of training data is typically required to train network parameters, it is unfeasible to collect sufficient ground-truth data, i.e., pairs consisting of the gait video and the health indicators measured using a body composition meter for each subject. We therefore use a two-step approach to exploit an auxiliary gait dataset that contains a large number of subjects but lacks the ground-truth health indicators. At the first step, we pre-train a backbone network using the auxiliary dataset to output gait primitives such as arm swing, stride, the degree of stoop, and the body width — considered to be relevant to the health indicators. At the second step, we add some layers to the backbone network and fine-tune the entire network to output the health indicators even with a limited number of ground-truth data points of the health indicators. Experimental results show that the proposed method outperforms the other methods when training from scratch as well as when using an auto-encoder-based pre-training and fine-tuning approach; it achieves relatively high estimation accuracy for the body composition-related health indicators except for body fat-relevant ones.

1-20hit(334hit)