The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dimension(350hit)

21-40hit(350hit)

  • Concept Demonstration of 3D Waveguides Shuffle Converter for Multi-Core Fiber/Single-Mode Fiber Fan-in Fan-out Configuration Toward Over 1,000 Port Count

    Haisong JIANG  Yasuhiro HINOKUMA  Sampad GHOSH  Ryota KUWAHATA  kiichi HAMAMOTO  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2020/05/25
      Vol:
    E104-C No:1
      Page(s):
    34-36

    A novel shuffle converter by using 3D waveguide of MCF (multi-core fiber)/SMF (single mode fiber) ribbon fan-in fan-out configuration towards over 1,000 port count optical matrix switch has been proposed. The shuffle converter enables to avoid waveguide crossing section in the optical matrix switch configuration, and the principle device showed sufficient crosstalk of less than -54.2 dB, and insertion loss of 2.1 dB successfully.

  • Collaborative Illustrator with Android Tablets Communicating through WebRTC

    Shougo INOUE  Satoshi FUJITA  

     
    PAPER-Computer System

      Pubricized:
    2020/08/13
      Vol:
    E103-D No:12
      Page(s):
    2518-2524

    In this paper, we consider the collaborative editing of two-dimensional (2D) data such as handwritten letters and illustrations. In contrast to the editing of 1D data, which is generally realized by the combination of insertion/deletion of characters, overriding of strokes can have a specific meaning in editing 2D data. In other words, the appearance of the resulting picture depends on the reflection order of strokes to the shared canvas in addition of the absolute coordinate of the strokes. We propose a Peer-to-Peer (P2P) collaborative drawing system consisting of several nodes with replica canvas, in which the consistency among replica canvases is maintained through data channel of WebRTC. The system supports three editing modes concerned with the reflection order of strokes generated by different users. The result of experiments indicates that the proposed system realizes a short latency of around 120 ms, which is a half of a cloud-based system implemented with Firebase Realtime Database. In addition, it realizes a smooth drawing of pictures on remote canvases with a refresh rate of 12 fps.

  • On Dimensionally Orthogonal Diagonal Hypercubes Open Access

    Xiao-Nan LU  Tomoko ADACHI  

     
    PAPER-combinatorics

      Vol:
    E103-A No:10
      Page(s):
    1211-1217

    In this paper, we propose a notion for high-dimensional generalizations of mutually orthogonal Latin squares (MOLS) and mutually orthogonal diagonal Latin squares (MODLS), called mutually dimensionally orthogonal d-cubes (MOC) and mutually dimensionally orthogonal diagonal d-cubes (MODC). Systematic constructions for MOC and MODC by using polynomials over finite fields are investigated. In particular, for 3-dimensional cubes, the results for the maximum possible number of MODC are improved by adopting the proposed construction.

  • Efficient Hybrid DOA Estimation for Massive Uniform Rectangular Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:6
      Page(s):
    836-840

    In this letter, an efficient hybrid direction-of-arrival (DOA) estimation scheme is devised for massive uniform rectangular array. In this scheme, the DOA estimator based on a two-dimensional (2D) discrete Fourier transform is first applied to acquire coarse initial DOA estimates for single data snapshot. Then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. Meanwhile, a Nyström-based method is utilized to correctly compute the required noise-subspace projection matrix, avoiding the direct computation of full-dimensional sample correlation matrix and its eigenvalue decomposition. Therefore, the proposed scheme not only can estimate DOA, but also save computational cost, especially in massive antenna arrays scenarios. Simulation results are included to demonstrate the effectiveness of the proposed hybrid estimate scheme.

  • A New Closed-Form Algorithm for Spatial Three-Dimensional Localization with Multiple One-Dimensional Uniform Linear Arrays

    Yifan WEI  Wanchun LI  Yuning GUO  Hongshu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:4
      Page(s):
    704-709

    This paper presents a three-dimensional (3D) spatial localization algorithm by using multiple one-dimensional uniform linear arrays (ULA). We first discuss geometric features of the angle-of-arrival (AOA) measurements of the array and present the corresponding principle of spatial cone angle intersection positioning with an angular measurement model. Then, we propose a new positioning method with an analytic study on the geometric dilution of precision (GDOP) of target location in different cases. The results of simulation show that the estimation accuracy of this method can attain the Cramér-Rao Bound (CRB) under low measurement noise.

  • An Effective Track Width with a 2D Modulation Code in Two-Dimensional Magnetic Recording (TDMR) Systems Open Access

    Kotchakorn PITUSO  Chanon WARISARN  Damrongsak TONGSOMPORN  

     
    PAPER-Storage Technology

      Pubricized:
    2019/08/05
      Vol:
    E102-C No:11
      Page(s):
    839-844

    When the track density of two-dimensional magnetic recording (TDMR) systems is increased, intertrack interference (ITI) inevitably grows, resulting in the extreme degradation of an overall system performance. In this work, we present coding, writing, and reading techniques which allow TDMR systems with multi-readers to overcome severe ITI. A rate-5/6 two-dimensional (2D) modulation code is adopted to protect middle-track data from ITI based on cross-track data dependence. Since the rate-5/6 2D modulation code greatly improves the reliability of the middle-track, there is a bit-error rate gap between middle-track and sidetracks. Therefore, we propose the different track width writing technique to optimize the reliability of all three data tracks. In addition, we also evaluate the TDMR system performance using an user areal density capability (UADC) as a main key parameter. Here, an areal density capability (ADC) can be measured by finding the bit-error rate of the system with sweeping track and linear densities. The UADC is then obtained by removing redundancy from the ADC. Simulation results show that a system with our proposed techniques gains the UADC of about 4.66% over the conventional TDMR systems.

  • LEF: An Effective Routing Algorithm for Two-Dimensional Meshes

    Thiem Van CHU  Kenji KISE  

     
    PAPER-Computer System

      Pubricized:
    2019/07/09
      Vol:
    E102-D No:10
      Page(s):
    1925-1941

    We design a new oblivious routing algorithm for two-dimensional mesh-based Networks-on-Chip (NoCs) called LEF (Long Edge First) which offers high throughput with low design complexity. LEF's basic idea comes from conventional wisdom in choosing the appropriate dimension-order routing (DOR) algorithm for supercomputers with asymmetric mesh or torus interconnects: routing longest dimensions first provides better performance than other strategies. In LEF, we combine the XY DOR and the YX DOR. When routing a packet, which DOR algorithm is chosen depends on the relative position between the source node and the destination node. Decisions of selecting the appropriate DOR algorithm are not fixed to the network shape but instead made on a per-packet basis. We also propose an efficient deadlock avoidance method for LEF in which the use of virtual channels is more flexible than in the conventional method. We evaluate LEF against O1TURN, another effective oblivious routing algorithm, and a minimal adaptive routing algorithm based on the odd-even turn model. The evaluation results show that LEF is particularly effective when the communication is within an asymmetric mesh. In a 16×8 NoC, LEF even outperforms the adaptive routing algorithm in some cases and delivers from around 4% up to around 64.5% higher throughput than O1TURN. Our results also show that the proposed deadlock avoidance method helps to improve LEF's performance significantly and can be used to improve O1TURN's performance. We also examine LEF in large-scale NoCs with thousands of nodes. Our results show that, as the NoC size increases, the performance of the routing algorithms becomes more strongly influenced by the resource allocation policy in the network and the effect is different for each algorithm. This is evident in that results of middle-scale NoCs with around 100 nodes cannot be applied directly to large-scale NoCs.

  • Boundary Node Identification in Three Dimensional Wireless Sensor Networks for Surface Coverage

    Linna WEI  Xiaoxiao SONG  Xiao ZHENG  Xuangou WU  Guan GUI  

     
    PAPER-Information Network

      Pubricized:
    2019/03/04
      Vol:
    E102-D No:6
      Page(s):
    1126-1135

    With the existing of coverage holes, the Quality of Service (such as event response, package delay, and the life time et al.) of a Wireless Sensor Network (WSN) may become weaker. In order to recover the holes, one can locate them by identifying the boundary nodes on their edges. Little effort has been made to distinguish the boundary nodes in a model where wireless sensors are randomly deployed on a three-dimensional surface. In this paper, we propose a distributed method which contains three steps in succession. It first projects the 1-hop neighborhood of a sensor to the plane. Then, it sorts the projected nodes according to their angles and finds out if there exists any ring formed by them. At last, the algorithm validates a circle to confirm that it is a ring surrounding the node. Our solution simulates the behavior of rotating a semicircle plate around a sensor under the guidance of its neighbors. Different from the existing results, our method transforms a three-dimensional problem into a two-dimensional one and maintaining its original topology, and it does not rely on any complex Hamiltonian Cycle finding to test the existence of a circle in the neighborhood of a sensor. Simulation results show our method outperforms others at the correctness and effectiveness in identifying the nodes on the edges of a three-dimensional WSN.

  • 2-D DOA Estimation Based on Sparse Bayesian Learning for L-Shaped Nested Array

    Lu CHEN  Daping BI  Jifei PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/10/23
      Vol:
    E102-B No:5
      Page(s):
    992-999

    In sparsity-based optimization problems for two dimensional (2-D) direction-of-arrival (DOA) estimation using L-shaped nested arrays, one of the major issues is computational complexity. A 2-D DOA estimation algorithm is proposed based on reconsitution sparse Bayesian learning (RSBL) and cross covariance matrix decomposition. A single measurement vector (SMV) model is obtained by the difference coarray corresponding to one-dimensional nested array. Through spatial smoothing, the signal measurement vector is transformed into a multiple measurement vector (MMV) matrix. The signal matrix is separated by singular values decomposition (SVD) of the matrix. Using this method, the dimensionality of the sensing matrix and data size can be reduced. The sparse Bayesian learning algorithm is used to estimate one-dimensional angles. By using the one-dimensional angle estimations, the steering vector matrix is reconstructed. The cross covariance matrix of two dimensions is decomposed and transformed. Then the closed expression of the steering vector matrix of another dimension is derived, and the angles are estimated. Automatic pairing can be achieved in two dimensions. Through the proposed algorithm, the 2-D search problem is transformed into a one-dimensional search problem and a matrix transformation problem. Simulations show that the proposed algorithm has better angle estimation accuracy than the traditional two-dimensional direction finding algorithm at low signal-to-noise ratio and few samples.

  • The BINDS-Tree: A Space-Partitioning Based Indexing Scheme for Box Queries in Non-Ordered Discrete Data Spaces

    A. K. M. Tauhidul ISLAM  Sakti PRAMANIK  Qiang ZHU  

     
    PAPER

      Pubricized:
    2019/01/16
      Vol:
    E102-D No:4
      Page(s):
    745-758

    In recent years we have witnessed an increasing demand to process queries on large datasets in Non-ordered Discrete Data Spaces (NDDS). In particular, one type of query in an NDDS, called box queries, is used in many emerging applications including error corrections in bioinformatics and network intrusion detection in cybersecurity. Effective indexing methods are necessary for efficiently processing queries on large datasets in disk. However, most existing NDDS indexing methods were not designed for box queries. Several recent indexing methods developed for box queries on a large NDDS dataset in disk are based on the popular data-partitioning approach. Unfortunately, a space-partitioning based indexing scheme, which is more effective for box queries in an NDDS, has not been studied before. In this paper, we propose a novel indexing method based on space-partitioning, called the BINDS-tree, for supporting efficient box queries on a large NDDS dataset in disk. A number of effective strategies such as node split based on minimum span and cross optimal balance, redundancy reduction utilizing a singleton dimension inheritance property, and a space-efficient structure for the split history are incorporated in the constructing algorithm for the BINDS-tree. Experimental results demonstrate that the proposed BINDS-tree significantly improves the box query I/O performance, comparing to that of the state-of-the-artdata-partitioning based NDDS indexing method.

  • A Universal Two-Dimensional Source Coding by Means of Subblock Enumeration Open Access

    Takahiro OTA  Hiroyoshi MORITA  Akiko MANADA  

     
    PAPER-Information Theory

      Vol:
    E102-A No:2
      Page(s):
    440-449

    The technique of lossless compression via substring enumeration (CSE) is a kind of enumerative code and uses a probabilistic model built from the circular string of an input source for encoding a one-dimensional (1D) source. CSE is applicable to two-dimensional (2D) sources, such as images, by dealing with a line of pixels of a 2D source as a symbol of an extended alphabet. At the initial step of CSE encoding process, we need to output the number of occurrences of all symbols of the extended alphabet, so that the time complexity increases exponentially when the size of source becomes large. To reduce computational time, we can rearrange pixels of a 2D source into a 1D source string along a space-filling curve like a Hilbert curve. However, information on adjacent cells in a 2D source may be lost in the conversion. To reduce the time complexity and compress a 2D source without converting to a 1D source, we propose a new CSE which can encode a 2D source in a block-by-block fashion instead of in a line-by-line fashion. The proposed algorithm uses the flat torus of an input 2D source as a probabilistic model instead of the circular string of the source. Moreover, we prove the asymptotic optimality of the proposed algorithm for 2D general sources.

  • Complicated Superstable Periodic Orbits in a Simple Spiking Neuron Model with Rectangular Threshold Signal

    Yusuke MATSUOKA  

     
    LETTER-Nonlinear Problems

      Vol:
    E101-A No:11
      Page(s):
    1944-1948

    We studied complicated superstable periodic orbits (SSPOs) in a spiking neuron model with a rectangular threshold signal. The neuron exhibited SSPOs with various periods that changed dramatically when we varied the parameter space. Using a one-dimensional return map defined by the spike phase, we evaluated period changes and showed its complicated distribution. Finally, we constructed a test circuit to confirm the typical phenomena displayed by the mathematical model.

  • Accelerating a Lloyd-Type k-Means Clustering Algorithm with Summable Lower Bounds in a Lower-Dimensional Space

    Kazuo AOYAMA  Kazumi SAITO  Tetsuo IKEDA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/08/02
      Vol:
    E101-D No:11
      Page(s):
    2773-2783

    This paper presents an efficient acceleration algorithm for Lloyd-type k-means clustering, which is suitable to a large-scale and high-dimensional data set with potentially numerous classes. The algorithm employs a novel projection-based filter (PRJ) to avoid unnecessary distance calculations, resulting in high-speed performance keeping the same results as a standard Lloyd's algorithm. The PRJ exploits a summable lower bound on a squared distance defined in a lower-dimensional space to which data points are projected. The summable lower bound can make the bound tighter dynamically by incremental addition of components in the lower-dimensional space within each iteration although the existing lower bounds used in other acceleration algorithms work only once as a fixed filter. Experimental results on large-scale and high-dimensional real image data sets demonstrate that the proposed algorithm works at high speed and with low memory consumption when large k values are given, compared with the state-of-the-art algorithms.

  • Frequency-Dependent LOD-FDTD Method in Cylindrical Coordinates

    Jun SHIBAYAMA  Tatsuyuki HARA  Masato ITO  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    637-639

    The locally one-dimensional finite-difference time-domain (FDTD) method in cylindrical coordinates is extended to a frequency-dependent version. The fundamental scheme is utilized to perform matrix-operator-free formulations in the right-hand sides. For the analysis of surface plasmon polaritons propagating along a plasmonic grating, the computation time is significantly reduced to less than 10%, compared with the explicit cylindrical FDTD method.

  • Growth Mechanism of Polar-Plane-Free Faceted InGaN Quantum Wells Open Access

    Yoshinobu MATSUDA  Mitsuru FUNATO  Yoichi KAWAKAMI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    532-536

    The growth mechanisms of three-dimensionally (3D) faceted InGaN quantum wells (QWs) on (=1=12=2) GaN substrates are discussed. The structure is composed of (=1=12=2), {=110=1}, and {=1100} planes, and the cross sectional shape is similar to that of 3D QWs on (0001). However, the 3D QWs on (=1=12=2) and (0001) show quite different inter-facet variation of In compositions. To clarify this observation, the local thicknesses of constituent InN and GaN on the 3D GaN are fitted with a formula derived from the diffusion equation. It is suggested that the difference in the In incorporation efficiency of each crystallographic plane strongly affects the surface In adatom migration.

  • Low-Loss 3-Dimensional Shuffling Graded-Index Polymer Optical Waveguides for Optical Printed Circuit Boards Open Access

    Omar Faruk RASEL  Akira YAMAUCHI  Takaaki ISHIGURE  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    509-517

    This paper introduces a formation method for 3-dimensional 6 ch.×6 ch. shuffling structures with graded-index (GI) circular core in a multimode polymer optical waveguide for optical printed circuit boards (OPCBs) using a unique photomask-free fabrication technique named the Mosquito method. The interchannel pitch of the fabricated waveguides is 250µm, where all the channels consist of both horizontal and vertical bending structures and the last 6 channels in parallel cross over the first 6 channels. We also report 3-dimensional S-shaped polymer waveguides. In the S-shaped waveguides, the first and last 6 channels with both horizontal and vertical core bending composing the above 3-dimensional shuffling waveguide are separated, in order to evaluate the effect of over-crossing on the loss. It is experimentally confirmed that there is no excess insertion loss due to the shuffling structure in the 3-D shuffling waveguide. The evaluated crosstalk of the 3-D shuffling waveguide is lower than -30dB. The 3-D shuffling waveguide proposed in this paper will be a promising component to achieve high bandwidth density wiring for on-board optical interconnects.

  • Estimating the Quality of Fractal Compressed Images Using Lacunarity

    Megumi TAKEZAWA  Hirofumi SANADA  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER

      Vol:
    E101-A No:6
      Page(s):
    900-903

    In this paper, we propose a highly accurate method for estimating the quality of images compressed using fractal image compression. Using an iterated function system, fractal image compression compresses images by exploiting their self-similarity, thereby achieving high levels of performance; however, we cannot always use fractal image compression as a standard compression technique because some compressed images are of low quality. Generally, sufficient time is required for encoding and decoding an image before it can be determined whether the compressed image is of low quality or not. Therefore, in our previous study, we proposed a method to estimate the quality of images compressed using fractal image compression. Our previous method estimated the quality using image features of a given image without actually encoding and decoding the image, thereby providing an estimate rather quickly; however, estimation accuracy was not entirely sufficient. Therefore, in this paper, we extend our previously proposed method for improving estimation accuracy. Our improved method adopts a new image feature, namely lacunarity. Results of simulation showed that the proposed method achieves higher levels of accuracy than those of our previous method.

  • Two-Dimensional Compressed Sensing Using Two-Dimensional Random Permutation for Image Encryption-then-Compression Applications

    Yuqiang CAO  Weiguo GONG  Bo ZHANG  Fanxin ZENG  Sen BAI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:2
      Page(s):
    526-530

    Block compressed sensing with random permutation (BCS-RP) has been shown to be very effective for image Encryption-then-Compression (ETC) applications. However, in the BCS-RP scheme, the statistical information of the blocks is disclosed, because the encryption is conducted within each small block of the image. To solve this problem, a two-dimension compressed sensing (2DCS) with 2D random permutation (2DRP) strategy for image ETC applications is proposed in this letter, where the 2DRP strategy is used for encrypting the image and the 2DCS scheme is used for compressing the encrypted image. Compared with the BCS-RP scheme, the proposed approach has two benefits. Firstly, it offers better security. Secondly, it obtains a significant gain of peak signal-to-noise ratio (PSNR) of the reconstructed-images.

  • Three Dimensional FPGA Architecture with Fewer TSVs

    Motoki AMAGASAKI  Masato IKEBE  Qian ZHAO  Masahiro IIDA  Toshinori SUEYOSHI  

     
    PAPER-Device and Architecture

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    278-287

    Three-dimensional (3D) field-programmable gate arrays (FPGAs) are expected to offer higher logic density as well as improved delay and power performance by utilizing 3D integrated circuit technology. However, because through-silicon-vias (TSVs) for conventional 3D FPGA interlayer connections have a large area overhead, there is an inherent tradeoff between connectivity and small size. To find a balance between cost and performance, and to explore 3D FPGAs with realistic 3D integration processes, we propose two types of 3D FPGA and construct design tool sets for architecture exploration. In previous research, we created a TSV-free 3D FPGA with a face-down integration method; however, this was limited to two layers. In this paper, we discuss the face-up stacking of several face-down stacked FPGAs. To minimize the number of TSVs, we placed TSVs peripheral to the FPGAs for 3D-FPGA with 4 layers. According to our results, a 2-layer 3D FPGA has reasonable performance when limiting the design to two layers, but a 4-layer 3D FPGA is a better choice when area is emphasized.

  • Locomotion Control with Inverted Pendulum Model and Hierarchical Low-Dimensional Data

    Ku-Hyun HAN  Byung-Ha PARK  Kwang-Mo JUNG  JungHyun HAN  

     
    LETTER-Computer Graphics

      Pubricized:
    2017/07/27
      Vol:
    E100-D No:11
      Page(s):
    2744-2746

    This paper presents an interactive locomotion controller using motion capture data and an inverted pendulum model (IPM). The motion data of a character is decomposed into those of upper and lower bodies, which are then dimension-reduced via what we call hierarchical Gaussian process dynamical model (H-GPDM). The locomotion controller receives the desired walking direction from the user. It is integrated into the IPM to determine the pose of the center of mass and the stance-foot position of the character. They are input to the H-GPDM, which interpolates the low-dimensional data to synthesise a redirected motion sequence on an uneven surface. The locomotion controller allows the upper and lower bodies to be independently controlled and helps us generate natural locomotion. It can be used in various real-time applications such as games.

21-40hit(350hit)