The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] electromagnetic(341hit)

141-160hit(341hit)

  • Design of Measurement Apparatus for Electromagnetic Shielding Effectiveness Using Flanged Double Ridged Waveguide

    Jong Hwa KWON  Jae Ick CHOI  Jong Gwan YOOK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E91-B No:12
      Page(s):
    4071-4074

    In this paper, we design and manufacture a flanged double ridged waveguide with a tapered section as a sample holder for measuring the electromagnetic shielding effectiveness (SE) of planar material in broadband frequency ranges up to 10 GHz. The proposed technique overcomes the limitations of the conventional ASTM D4935 test method at high frequencies. The simulation results for the designed sample holders agree well with the fabricated ones in consideration of the design specification of S11 < -20 dB within the frequency range of 1-10 GHz. To verify the proposed measurement apparatus, the measured SE data of the commercial shielding materials from 1 to 10 GHz were indirectly compared with those obtained from the ASTM D4935 from 30 MHz to 1 GHz. We observed that the SE data obtained by using both experimental techniques agree with each other.

  • Ultra Wideband Electromagnetic Phantoms for Antennas and Propagation Studies

    Hironobu YAMAMOTO  Jian ZHOU  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3173-3182

    Ultra wideband (UWB) technologies are expected to be used in ultra-high-speed wireless personal area networks (WPAN) and wireless body area networks (WBAN). UWB human electromagnetic phantoms are useful for performance evaluation of antennas mounted in the vicinity of a human body and channel assessment when a human body blocks a propagation path. Publications on UWB phantoms, however, have been limited so far. This paper describes the development of liquid UWB phantom material (aqueous solution of sucrose) and UWB arm and torso phantoms. The UWB phantoms are not intended to evaluate a specific absorption rate (SAR) in a human body, because UWB devices are supposed to transmit at very low power and thus should pose no human hazard.

  • High Speed Electronic Connector Design: A Review of Electrical and Electromagnetic Properties of Passive Contact Elements -- Part 1

    Roland S. TIMSIT  

     
    INVITED PAPER

      Vol:
    E91-C No:8
      Page(s):
    1178-1191

    At high signal frequencies (i.e. in the GHz range), a connector must be considered as part of an electromagnetic transmission line. At these frequencies, the impedance characteristics of the connector stemming from the distributed inductance and capacitance of pins and the associated wiring, must be carefully controlled; insertion losses must be minimized and undesirable coupling between non-neighboring pins giving rise to crosstalk must be avoided to achieve optimal signal transmission. This paper reviews fundamental issues associated with the performance optimization of multi-conductor connector structures for high speed signal transmission. The paper complements an earlier publication that reviewed the major factors affecting electrical contact resistance at high frequencies [1].

  • Fundamental Measurement of Electromagnetic Field Radiated from a Coaxial Transmission Line Caused by Connector Contact Failure

    Yu-ichi HAYASHI  Hideaki SONE  

     
    PAPER-Signal Transmission

      Vol:
    E91-C No:8
      Page(s):
    1306-1312

    When contact failure occurs in a connector in a coaxial HF signal transmission line, an electromagnetic field is radiated around the line. We have measured the electromagnetic field and examined the characteristics of such radiation. The results show that the radiation is related to the contact resistance and the symmetry of the distribution of contact points at the connector. When contact resistance is low, radiation is observed at resonant frequencies related to the length of the transmission line. If a connector has axially asymmetric contact points, its radiation is higher than that when the contact points are symmetric. We show that if contact points in a connector are axially symmetrical with resistance lower than 0.25 Ω, the electromagnetic interference caused by the connector contact failure is as low as the background noise.

  • Study on Arc Generated by Opening Electromagnetic Relay Contacts in DC Low-Current Resistive Circuit with Constant Velocity

    Guofu ZHAI  Xue ZHOU  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1233-1239

    An electrical arc is generated by opening the contacts of a relay when the current is above the minimum arc current in a circuit. A magneto-hydrodynamic (MHD) model was employed to simulate this dynamic arcing process. The distributions of arc parameters such as temperature, electrical field and magnetic flux density generated by opening the contacts in a circuit with a 5 A DC low current were obtained. The behaviors of the arc parameters with increasing gap length between the contacts were also simulated. The MHD model was then combined with structured dynamic layering, which is a dynamic meshing technique of computational fluid dynamics (CFD) to calculate the dynamic arcing process, and the arc parameters generated by opening the contacts in the circuit with a 5 A DC low current with a constant velocity were also obtained. It turned out that the computed time-varying contact voltage and arc duration agreed well with the test results. Thus, the validity of the simulation was demonstrated.

  • 3-D Finite Element Analysis of Dynamic Characteristics of Twin-Type Relay Interfered by Uniform Constant Magnetic Field

    Guofu ZHAI  Wenying YANG  Xue ZHOU  

     
    PAPER-Contact Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1215-1221

    Research on the electromagnetic compatibility of functional module composed of two independent electromagnetic relays in a hermetically sealed shell is the technical foundation for integration and miniaturization of electronic equipment in the future. In this paper, 3D finite element method (FEM) was used to analyze the dynamic characteristics of twin-type relay interfered by uniform constant magnetic field and identify the sensitive direction in which the relay was easily interfered. The models of twin-type relay in three working states were founded. Through simulation and analysis, it was found out how the operation time and electromagnetic torque of twin-type relay changed with the outer interfered magnetic field. When the relay was on the point of operation failure, the critical value of magnetic field was calculated through simulation. The simulation results of the dynamic characteristics of twin-type relay agree well with the experimental data. The conclusion in this paper is of great value for research on the electromagnetic compatibility of relay functional module.

  • Global Signal Elimination and Local Signals Enhancement from EM Radiation Waves Using Independent Component Analysis

    Motoaki MOURI  Arao FUNASE  Andrzej CICHOCKI  Ichi TAKUMI  Hiroshi YASUKAWA  Masayasu HATA  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1875-1882

    Anomalous environmental electromagnetic (EM) radiation waves have been reported as the portents of earthquakes. Our study's goal is predicting earthquakes using EM radiation waves by detecting some anomalies. We have been measuring the Extremely Low Frequency (ELF) range EM radiation waves all over Japan. However, the recorded data contain signals unrelated to earthquakes. These signals, as noise, confound earthquake prediction efforts. In this paper, we propose an efficient method of global signal elimination and enhancement local signals using Independent Component Analysis (ICA). We evaluated the effectiveness of this method.

  • Breaking Contact Phenomena of a Time-coordinated Non-arcing Relay

    Noboru WAKATSUKI  Hiroshi HONMA  

     
    PAPER-Contact Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1206-1210

    VI time responses of a conventional electromagnetic relay during breaking contact operations were measured. In a conventional switching circuit, unstable contact resistance, irregular bouncing, and poor reproducibility were confirmed. Using a transient current switch circuit and two sharpened contact electrodes, bouncing during a breaking operation was suppressed, and unstable contact resistance changes and reproducibility of breaking operation were also improved.

  • A Method for Converting Amplitude Probability Distribution of Disturbance from One Measurement Frequency to Another Open Access

    Yasushi MATSUMOTO  Kaoru GOTOH  Takashi SHINOZUKA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E91-B No:6
      Page(s):
    2010-2019

    To estimate the impact of electromagnetic disturbances on multi-carrier wireless systems, a method for converting an amplitude probability distribution (APD) of disturbance measured at a frequency to be valid for another frequency is presented. The conversion uses two parameters, the receiver noise power of the APD measuring equipment and a scale factor that can be estimated from a measured disturbance spectrum. The method is based on the assumption that the difference in measurement frequency affects only the relative scale of the probability distribution of band-limited disturbance amplitude, and is applicable to disturbances of practically importance such as 1) continuous or pulse-modulated wideband Gaussian noise, 2) disturbance with a much narrower bandwidth than receiver bandwidth B, and 3) repetitive short pulses with similar waveforms with an interval much longer than 1/B. The validity of the proposed method is examined by measurements of actual disturbances.

  • Evaluation of Information Leakage via Electromagnetic Emanation and Effectiveness of Tempest

    Hidema TANAKA  

     
    PAPER-Information Leakage

      Vol:
    E91-D No:5
      Page(s):
    1439-1446

    It is well known that there is relationship between electromagnetic emanation and processing information in IT devices such as personal computers and smart cards. By analyzing such electromagnetic emanation, eavesdropper will be able to get some information, so it becomes a real threat of information security. In this paper, we show how to estimate amount of information that is leaked as electromagnetic emanation. We assume the space between the IT device and the receiver is a communication channel, and we define the amount of information leakage via electromagnetic emanations by its channel capacity. By some experimental results of Tempest, we show example estimations of amount of information leakage. Using the value of channel capacity, we can calculate the amount of information per pixel in the reconstructed image. And we evaluate the effectiveness of Tempest fonts generated by Gaussian method and its threshold of security.

  • Acceleration of ADI-FDTD Method by Gauss-Seidel Relaxation Approach

    Yuya NAKAZONO  Hideki ASAI  

     
    LETTER

      Vol:
    E91-A No:2
      Page(s):
    550-553

    This report describes an application of relaxation technique to the alternating direction implicit finite-difference time-domain (ADI-FDTD) method. The ADI-FDTD method is quite stable even when the CFL condition is not satisfied. However, the ADI-FDTD method is computationally more complicate than the conventional FDTD method and this method requires to solving the tri-diagonal matrix equation. Thus, this method may require more computational cost than the standard FDTD method due to the large scale tri-diagonal matrix solution corresponding to a large number of meshes. In this report, relaxation-based solution technique is discussed for the matrix solution and a simple numerical example is shown. As a result, it is confirmed that ADI-FDTD method with the relaxation technique is useful for the acceleration of the electromagnetic field simulation.

  • Prevention of Information Leakage by Photo-Coupling in Smart Card

    Sung-Shiou SHEN  Jung-Hui CHIU  

     
    PAPER-Side Channel Attacks

      Vol:
    E91-A No:1
      Page(s):
    160-167

    Advances in smart card technology encourages smart card use in more sensitive applications, such as storing important information and securing application. Smart cards are however vulnerable to side channel attacks. Power consumption and electromagnetic radiation of the smart card can leak information about the secret data protected by the smart card. Our paper describes two possible hardware countermeasures that protect against side channel information leakage. We show that power analysis can be prevented by adopting photo-coupling techniques. This method involves the use of LED with photovoltaic cells and photo-couplers on the power, reset, I/O and clock lines of the smart card. This method reduces the risk of internal data bus leakage on the external data lines. Moreover, we also discuss the effectiveness of reducing electromagnetic radiation by using embedded metal plates.

  • Wideband Microstrip Bandpass Filter Based on EBG Concept

    Himal C. JAYATILAKA  David M. KLYMYSHYN  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2212-2217

    A periodically loaded ultra wideband (UWB) bandpass filter based on the electromagnetic band-gap (EBG) concept is presented. Compact wideband filters with steep transition bands can be designed easily using this novel methodology. Unit cells in the EBG circuit model are realized by capacitive and inductive parallel loading of a transmission line. These unit cells are cascaded to realize bandpass filters whose bandwidth depends on the reactive loading of unit cells. The number of unit cells determines the steepness of the band edges of the filter. The main advantage lies in the fact that the size of unit cells can be small because electrical length of transmission line segments in unit cells can be chosen arbitrarily, hence the final filter structure becomes small in size. A microstrip filter with 60% bandwidth is designed and the physical size is compared with a conventional wideband bandpass filter designed with quarter wavelength admittance inverters.

  • Evaluation of Information Leakage from PC Displays Using Spectrum Analyzers

    Toshihide TOSAKA  Yukio YAMANAKA  Kaori FUKUNAGA  Ryo ISHIKAWA  Mitsuo HATTORI  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E90-B No:11
      Page(s):
    3315-3318

    To evaluate whether electromagnetic disturbances that leak from PC displays contain information or not, we need to reconstruct the information from the measured disturbance. This requires a special receiver, and not all test houses have a special receiver. In this paper, we propose performing the evaluation with the spectrum analyzers commonly used for EMI measurement. First, we select a spectrum that containing the frequency component of the vertical sync signal using a spectrum analyzer (SA1). Then, we measure the video output of SA1 using another spectrum analyzer (SA2) and evaluate the disturbance from the frequency component of the horizontal sync signal.

  • Electric Field Simulations around a Car of the Tire Pressure Monitoring System

    Kouichi TANOSHITA  Koji NAKATANI  Yoshihide YAMADA  

     
    PAPER-Electromagnetics

      Vol:
    E90-B No:9
      Page(s):
    2416-2422

    In order to support driving safety, TPMS (Tire Pressure Monitoring System) has been introduced in U.S.A. and Europe. In Japan, the AIRwatch system has been developed and commercialized. Some studies were made to clarify the electric field environment of this system. However, no detailed calculation of the electric field between the transmitter in the tire and the receiving antenna has been published. This paper clarifies the electric field environment of the Japanese system through electromagnetic simulations by a high performance MoM simulator that utilizes the MLFMM scheme. First of all, electric wave emissions from an antenna mounted in a tire are shown to be larger than that of the same antenna in free space. The tire rubber effects are also investigated. Next, electric field distributions on the windshield holding the receiving antenna are calculated. By comparing calculated electric field levels with those in the free space condition, car body interruptions are clarified. Because car body interruptions are not so severe, it is shown that the free space electric field levels can be used as rough design parameters. Moreover, electric field changes due to tire rotation are also clarified. Calculation accuracy is confirmed by the good agreement with measured data collected from a 1/5 scale car model. To permit estimations to be made in actual situations, the effects of the ground are also investigated. This simulation study introduces a lot of important data useful in TPMS system design.

  • Anisotropic Periodic Assemblies and Metamaterials for Applications to Antennas and Microwave Devices Open Access

    John L. VOLAKIS  Gokhan MUMCU  Kubilay SERTEL  

     
    INVITED PAPER

      Vol:
    E90-B No:9
      Page(s):
    2203-2207

    Basic microwave properties of magnetic photonic (MPC) and degenerate band edge (DBE) crystals are investigated mathematically and experimentally. Two dimensional and three dimensional models are considered demonstrating the very high sensitivity and field growth associated with these crystals. A major part of the paper deals with the development of realistic anisotropic periodic structures using a combination of layers constructed from thin film frequency selective surfaces, alumina, titanate and calcium vanadium garnet (CVG) materials. Measurements for antenna applications demonstrate and validate the theoretical performance of the MPC and DBE crystals. The latter part of the paper will present an exciting and promising development relating to microwave circuit applications. Specifically, a novel dual-line printed circuit is presented to emulate propagation in anisotropic media. As such, the MPC and DBE phenomena can be realized using very simple printed circuits (coupled lines). Lastly, physically small printed antennas and arrays based on the coupled transmission lines are presented.

  • A GRID Computer Implementation of the Multilevel Fast Multipole Algorithm for Full-Wave Analysis of Optical Devices

    Jan FOSTIER  Femke OLYSLAGER  

     
    PAPER-Electromagnetics

      Vol:
    E90-B No:9
      Page(s):
    2430-2438

    We present a parallel multilevel fast multipole algorithm aimed at low cost parallel computers such as GRID computer environments and clusters of workstations. The algorithm is a scheduling algorithm where work packets are handled in a certain order to ensure minimal idle time of the processors and to avoid simultaneous bursts of communication between the processors. The algorithm is implemented on a method of moment discretization of a two-dimensional TM electromagnetic scattering problem. Examples of several optical devices with a size up to 28 500 wavelengths are presented.

  • Switched-Beam Slot Antenna over Electromagnetic Band-Gap Reflector

    Hiroyuki UNO  Yutaka SAITO  Yoshio KOYANAGI  Satoshi YAGITANI  Isamu NAGANO  

     
    PAPER-Antennas

      Vol:
    E90-B No:9
      Page(s):
    2263-2270

    This paper presents the switched-beam slot antenna over the electromagnetic band-gap (EBG) reflector. This antenna is composed of two slot elements fed with a phase difference and the EBG reflector, which is used in order to realize a low profile structure. The radiation characteristics of this antenna are calculated using the FDTD method. Calculations show that the height of the antenna using the EBG reflector is 60 % lower than that of the antenna using a perfect electric conductor (PEC) reflector. The radiation characteristics at the center of the operating frequency band in the EBG reflector are equivalent to that in the PEC reflector. It is shown that the tilt angle of the main beam in the elevation plane varies with the operating frequency, and the variation in the case of the EBG reflector is caused by its frequency-dependent reflection phase. Moreover, the radiation pattern of the fabricated antenna is measured. The results demonstrate that the low profile design can be achieved by using the EBG reflector, and reveal the influence of the EBG reflector on the antenna efficiency.

  • Comparisons of Simulated and Measured Electric Field Distributions in a Cabin of a Simplified Scale Car Model

    Satoru HORIUCHI  Kunihiko YAMADA  Shingo TANAKA  Yoshihide YAMADA  Naobumi MICHISHITA  

     
    PAPER-Measurements

      Vol:
    E90-B No:9
      Page(s):
    2408-2415

    The electric fields inside and outside a car must be carefully determined when designing a wireless communication system to be employed in the car. This paper introduces an effective simulation method and a precise measurement method of electric field distributions in a cabin of a simplified scale car model. A 1/3 car model is employed for ease of measurement. The scaled frequency of 2859 MHz, 3 times 953 MHz, is employed. The use of a moment method simulator utilizing the multilevel fast multipole method allows calculations to be performed on a personal computer. In order to judge the accuracy of simulation results, convergence of simulation output in accordance with segment size (triangle edge length) changes is ensured. Simulation loads in the case of metallic body only and a metallic body with window glass are also shown. In the measurements, an optical electric field probe is employed so as to minimize the disturbances that would otherwise be caused by metallic feed cable; precise measurement results are obtained. Comparisons of measured and simulated results demonstrate very good agreement which confirms the accuracy of the calculated results. 3-dimensional electric field distributions in the car model are shown and 3-dimensional standing wave shapes are clarified. Moreover, calculated and measured radiation patterns of the car model are shown so the total electric field distributions around a car are clarified.

  • Modeling and Simulation of Hermetically Sealed Electromagnetic Relay under Mechanical Environment

    Wanbin REN  Yinghua CHEN  Guofu ZHAI  

     
    PAPER-Relays & Switches

      Vol:
    E90-C No:7
      Page(s):
    1448-1454

    Hermetically sealed electromagnetic relays (EMR) are widely used for high reliability control and executive systems as a device mechanically transferring signals. Now they are more indispensable in space engineering, such as rockets, satellites and other ground attachment, but which mechanical atmosphere is too harsh. So dynamics response of EMR is needed to satisfy particularity of such mechanical atmosphere. In this paper, a typical hermetically sealed EMR structure is modeled by using finite element analysis software-Nastran. In the meantime the equivalent spring elements are introduced to simulate the contact of normally closed contacts, and the contact between armature and iron stopper. Therefore dynamic performance of EMR under different mechanical environment, including sinusoid vibration and shock condition is investigated completely. The factors affecting normal modes and dynamic response of EMR are analyzed. Comparisons show good correlation between experimental and numerical results.

141-160hit(341hit)