The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] electromagnetic(341hit)

181-200hit(341hit)

  • Modal-Expansion Analysis of Electromagnetically Coupled Coaxial Dipole Antennas

    Zhongxiang SHEN  Quanxin WANG  Ke-Li WU  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1654-1661

    This paper presents a modal-expansion analysis of the electromagnetically coupled coaxial dipole antenna. The analysis of the antenna problem is initially simplified using the even-odd mode excitation and then the resultant half structure is divided into two parts; one is the characterization of a coaxial feeding network and the other is the modeling of a sleeve monopole antenna driven by a coaxial line. The formally exact modal-expansion method is employed to analyze both parts. The analysis of the sleeve monopole antenna is facilitated by introducing a perfectly conducting boundary at a distance from the monopole's top end. The current distribution and input impedance of the electromagnetically coupled coaxial dipole antenna are obtained by finding expansion coefficients through enforcing the continuity of tangential field components across regional interfaces and cascading the two parts together. Numerical results for the coaxial dipole antenna's radiation characteristics are presented and discussed.

  • Spurious Suppression of a Parallel Coupled Microstrip Bandpass Filter with Simple Ring EBG Cells on the Middle Layer

    Hung-Wei WU  Min-Hang WENG  Yan-Kuin SU  Ru-Yuan YANG  Cheng-Yuan HUNG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:4
      Page(s):
    568-570

    This paper proposes a parallel coupled microstrip bandpass filter (BPF) with ring Electromagnetic Bandgap (EBG) cells on the middle layer for spurious suppression. The ring EBG cells of the middle layer add a good stopband-rejection mode to the second harmonics of the parallel coupled microstrip BPF with suppression of over -50 dB, without affecting the center frequency and insertion loss of the original designed BPF. The design of ring EBG cells is presented and verified by the experimented results.

  • A New Approach to Mixed-Path Propagation of Surface Wave

    Bin-hao JIANG  

     
    LETTER-Electromagnetic Theory

      Vol:
    E89-C No:3
      Page(s):
    434-436

    A new approach used to formulate to mixed-path propagation of surface wave is presented based on two main ingredients: the decomposition of electromagnetic fields and the introduction of equivalent electric (magnetic) currents adopted for convenience. The present method can be extended to obtain the corresponding results for the arbitrary incident wave excitation.

  • Free Space Measurement Method with Parallel Electromagnetic Wave Beam by Using Dielectric Lenses and Horn Antennas for Reflectivity of Electromagnetic Absorbers in Millimeter Waves

    Hirosuke SUZUKI  Atsuhiro NISHIKATA  Yutaka HIGASHIDA  Tetsu SOH  Osamu HASHIMOTO  

     
    PAPER

      Vol:
    E89-C No:1
      Page(s):
    24-29

    A free-space method is in wide spread use for the reflectivity measurement of electromagnetic wave absorbers (EMA) in VHF and UHF range. In the free-space method, the reflection levels from EMA and from the metal plate with same size as the EMA are measured, and the reflectivity is calculated from their ratio. The incident angle such as normal or oblique must be defined, and the polarization of electromagnetic (EM) wave must be specified to be TE, TM, or circularly-polarized mode. In this paper, a parallel EM wave beam method using dielectric lenses in front of horn antennas was studied experimentally. Electromagnetic wave absorption was measured with the vertical and the oblique incidence by using this parallel EM wave beam. This measurement system has following features:• It is compact because equiphase parallel EM wave beam was obtained in a short distance from the dielectric lens.• It requires no anechoic chamber because of little multi-reflection due to high directivity of parallel EM wave beam.• It allows a large oblique incident measurement by using high directive parallel EM wave beam.

  • A Study on the Effect of Grounded Conductive Sheet Placed over PCB for Electromagnetic Noise Shielding

    Motoshi TANAKA  Hisashi TAKITA  Hiroshi INOUE  

     
    LETTER

      Vol:
    E89-C No:1
      Page(s):
    77-79

    The effect of a grounded conductive sheet placed over a PCB with a microstrip line on the electromagnetic noise shielding is discussed experimentally and with FDTD modeling. The grounding position of the sheet, which is connected with the ground plane of PCB, is changed. In results, the resonance frequency is shifted by the grounding position, and reducing the resonance of the input impedance should make a more effective shielding for EM noise radiation below 1 GHz.

  • Near-Field Magnetic Measurements and Their Application to EMC of Digital Equipment

    Takashi HARADA  Norio MASUDA  Masahiro YAMAGUCHI  

     
    INVITED PAPER

      Vol:
    E89-C No:1
      Page(s):
    9-15

    Techniques of near-field magnetic measurement and their applications to EMC of digital equipment are described. Magnetic-field measurement near PCB or LSI is the mostly used technique to specify the source. This paper treats an example of board analysis by near-field magnetic measurement, the sensing mechanism and the structure of a loop probe, and a recent progress of this method and application. To establish appropriate design direction in high-speed and high-density packaging of electronic equipment, electromagnetic behavior in chip and package should be clarified. Expectation of development for measuring minute area is more and more increasing.

  • Electromagnetic Shielding Evaluation Setup for Conductive O-Rings

    Shinnichiro YAMAMOTO  Kennichi HATAKEYAMA  Kenji YAMAUCHI  Takeshi YAMADA  

     
    LETTER

      Vol:
    E89-C No:1
      Page(s):
    72-76

    A new shielding evaluation setup for conductive O-rings is proposed. This setup consists of the holder with a groove to fix the O-ring position. There are two ways to apply O-rings in narrow gaps, cylinder-fixing and plane-fixing. With this holder shielding effects of the O-rings can be evaluated from 10 kHz to 1 GHz for both fixing types.

  • Estimation of Surface Impedance for Inhomogeneous Half-Space Using Far Fields

    Michinari SHIMODA  Masazumi MIYOSHI  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2199-2207

    An inverse scattering problem of estimating the surface impedance for an inhomogeneous half-space is investigated. By virtue of the fact that the far field representation contains the spectral function of the scattered field, complex values of the function are estimated from a set of absolute values of the far field. An approximate function for the spectral function is reconstructed from the estimated complex values by the least-squares sense. The surface impedance is estimated through calculating the field on the surface of the half-space expressed by the inverse Fourier transform. Numerical examples are given and the accuracy of the estimation is discussed.

  • A Stack of Metal Rings for Reducing Common-Mode Current on a Wire Passing through an Aperture

    Sungtek KAHNG  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E88-B No:9
      Page(s):
    3819-3822

    Unwanted electromagnetic emission occurs due to the common-mode current on the cables entering a PC's metal enclosure and can be treated as wire antennas passing through the apertures of the enclosure. To reduce the emission, a stack of metal rings is suggested to be placed around the cable and external to the aperture, adopting the concept of a Coaxial Band-Stop Filter, for the first time. The influence of this novel structure on the common-mode current is examined in the FDTD-method frame work.

  • Electromagnetic and Thermal Dosimetry of a Cylindrical Waveguide-Type in vitro Exposure Apparatus

    Tomohide SONODA  Rui TOKUNAGA  Koichi SETO  Yukihisa SUZUKI  Kanako WAKE  Soichi WATANABE  Masao TAKI  

     
    PAPER-Biological Effects

      Vol:
    E88-B No:8
      Page(s):
    3287-3293

    In this paper, dosimetry of an in vitro exposure apparatus based on a cylindrical waveguide is performed. The SAR distributions are first obtained numerically by using FDTD method. The thermal fields in the medium are then estimated by numerical calculations of the equation of heat conduction. The maximum temperature rise for 17.9 W/kg average SAR during 3000 s exposure is about 2 on the bottom of the medium where cells are located. The thermal distribution is relatively uniform near the center of the dish and the temperature in this region is around 38.7. The results of the numerical calculation are experimentally supported. The results provide the electromagnetic and thermal characteristics of the exposure apparatus, which will define the exposure conditions of the planned experiments using this apparatus.

  • Radio Wave Interference Test Method for Wireless Communication System by Opened Parallel Wired Cell

    Masamitsu TOKUDA  Kouhei ICHIKAWA  Yasuo HONMA  Masayuki KITORA  

     
    PAPER-Communications

      Vol:
    E88-B No:8
      Page(s):
    3242-3248

    We have studied on the interference test method from IEEE802.11b to IEEE802.11g as an interference source with wide band spectrum by using the opened PW cell, and it is clear that the throughput of IEEE802.11g for only IEEE802.11b Ch.4 signal wave as the interference wave, whose frequency spectrum is almost not overlapping with IEEE802.11g, is almost not interfered by IEEE802.11b, but the throughputs for all other channels from Ch.5 to Ch.8 as the interference wave are interfered and decrease to below 2 Mbps. By comparing with conventional radiated RF electromagnetic field immunity test specified by IEC 61000-4-3, it is clear that the conventional immunity test cannot simulate the interference phenomena from IEEE802.11b to IEEE802.11g. Next, we tried to perform the interference test of the Bluetooth against the wireless LAN IEEE 802.11b as a disturbance source. As a result, it is revealed that the throughput of Bluetooth decreases according to increasing the interference wave level, and communication between EUT (slave) and the master of Bluetooth is interrupted for the interference wave corresponding to Ch.7 (244210 MHz). However, in the conventional immunity test specified by IEC 61000-4-3, the throughput of the Bluetooth does not affect for the all disturbance waves corresponding to the center frequency of bandwidth on the cannel of IEEE802.11b. Therefore, it is needed for the wireless LAN and the Bluetooth to develop new radiated immunity test method, which has the disturbance wave with wide bandwidth.

  • APD Measurement for Evaluating Disturbances Related to the Performance of Digital Communication Systems

    Kaoru GOTOH  Yasushi MATSUMOTO  Yukio YAMANAKA  Takashi SHINOZUKA  

     
    PAPER-Communications

      Vol:
    E88-B No:8
      Page(s):
    3235-3241

    The measured values of electromagnetic disturbances should strongly correlate with degradation in the communication quality of digital wireless communication systems. The Amplitude Probability Distribution (APD) of a disturbance represents statistical information as applicable measurement readings that meet the above requirement. In this paper, correlations between APD measurements of disturbances and the bit error rate (BER) as a quality degradation index for victim systems are quantitatively investigated. Disturbance regulation by APD measurements is discussed from the viewpoint of protecting systems from disturbances. This investigation specifically considers the situation in which a repetition pulse disturbance impacts PHS and W-CDMA systems assumed as victims. The results confirm high correlations between the APD and BER not only experimentally but also theoretically under some conditions. A disturbance regulation criterion based on APD measurements is thus proposed for compliance testing of electronic appliances with the potential to act as disturbance noise sources.

  • Correspondence of Common- and Differential-Mode Components on EM Radiation from Surface Microstrip Line Structure

    Yoshiki KAYANO  Motoshi TANAKA  Hiroshi INOUE  

     
    PAPER-Signal Transmission

      Vol:
    E88-C No:8
      Page(s):
    1688-1695

    It has been demonstrated that a common-mode (CM) current can dominate the EMI processes up to 1 GHz, despite the fact that a CM current is smaller than a differential-mode (DM) current. However, this description is insufficient to describe behavior above 1 GHz. In this paper, the correspondence of CM and DM components for total electromagnetic (EM) radiation from a printed circuit board (PCB) with surface microstrip line, which is commonly used in microwave integrated circuits, at gigahertz frequency is studied experimentally and with finite-difference time-domain (FDTD) modeling. In order to characterize the EM radiation, the frequency response of the CM current, the electric field near the PCB, and the electric far field are investigated. First, the frequency response of the CM current, near and far-fields for the PCB with an attached feed cable are compared up to 5 GHz. Although the CM current decreases above a few gigahertz, near and far electric fields increase as the frequency becomes higher. Second, in order to distinguish between CM and DM radiation at high frequency, the frequency response and the angle pattern of the far-field from a PCB without the feed cable are discussed. The results show that radiation up to 1 GHz is related to the CM component. However, depending on polarization and PCB geometry, radiation may be dominated by the DM rather than the CM component. The results indicate that the DM component may be more significant relative to the CM component, and the increase in EM radiation can not be predicted from only the frequency response of CM current. Therefore, identifying the dominant component is essential for suppressing the EM radiation. This study is a basic consideration to realize a technique which is effective on the suppression of the EM radiation from the PCB with an attached feed cable.

  • Experimental Study on Compensation of Array Element Pattern of Collinear Dipole Array Sensor

    Kyosuke AWAI  Kazumasa TAIRA  Kunio SAWAYA  Risaburo SATO  

     
    LETTER

      Vol:
    E88-B No:8
      Page(s):
    3314-3316

    A compensation method of the array element pattern is proposed to measure EM field distribution on an observation plane located several wavelengths away from electronic devices in a short time. Numerical and experimental data of the 3 and 5 element collinear dipole array sensors are presented to demonstrate the validity of the proposed method.

  • Radiated Electromagnetic Field Immunity Test Method for Wireless LAN Using Opened Parallel Wired Cell

    Masamitsu TOKUDA  Masayuki KITORA  Yasuo HONMA  Kouhei ICHIKAWA  

     
    PAPER-Communications

      Vol:
    E88-B No:8
      Page(s):
    3229-3234

    We study radiated RF (radio-frequency) electromagnetic field immunity test system for wireless LAN system by using opened PW (Parallel Wired) cell, in which metal cover is removed. Leakage electric field at distance of 160 cm from the opened PW cell decreases until 30 dB, and then does not affect to operation of the AP (Access Point) composed of the wireless LAN system that communicates EUT (Equipment Under Test) installed in the PW cell. NSA (Normalized Site Attenuation) between EUT and AP changes only several dB by inserting the PW cell, and then it can be concluded that the effect of PW cell for radio wave property of wireless communication system is negligible small. In addition, we try to measure dependencies of impressing level of disturbance wave on a throughput of wireless LAN systems IEEE802.11b and IEEE802.11g. As a result, it is confirmed that the radiated RF electromagnetic field immunity test system for wireless LAN system can be composed by using the opened PW cell without affecting from impressing disturbance wave.

  • Linear and Nonlinear Macromodels for System-Level Signal Integrity and EMC Assessment

    Flavio CANAVERO  Stefano GRIVET-TALOCIA  Ivan A. MAIO  Igor S. STIEVANO  

     
    INVITED PAPER

      Vol:
    E88-B No:8
      Page(s):
    3121-3126

    This paper presents a systematic methodology for the system-level assessment of signal integrity and electromagnetic compatibility effects in high-speed communication and information systems. The proposed modeling strategy is illustrated via a case study consisting of a critical coupled net of a complex system. Three main methodologies are employed for the construction of accurate and efficient macromodels for each of the sub-structures typically found along the signal propagation paths, i.e. drivers/receivers, transmission-line interconnects, and interconnects with a complex 3D geometry such as vias and connectors. The resulting macromodels are cast in a common form, enabling the use of either SPICE-like circuit solvers or VHDL-AMS equation-based solvers for system-level EMC predictions.

  • Estimation of Multiple Coherent Source Locations by Using SPM Method Combined with Signal Subspace Fitting Technique

    Yuzo YOSHIMOTO  Kazumasa TAIRA  Kunio SAWAYA  Risaburo SATO  

     
    PAPER-Measurements

      Vol:
    E88-B No:8
      Page(s):
    3164-3169

    A visualization method of coherent source locations based on the Sampled Pattern Matching (SPM) method is described. Modified SPM method is proposed to improve the S/N, in which the measurement of the electric field distribution is repeated in appropriate time duration and eigenvalue decomposition of the covariance matrix is introduced. A combination of the modified SPM method with the Weighted Subspace Fitting (WSF) method is also proposed to estimate accurate source locations. A calibration technique by using a reference antenna to compensate the complex pattern of the receiving antenna is proposed. Experimental investigation to estimate source location for one dipole antenna and two dipole antennas is also made to demonstrate the validity of the proposed method.

  • PCB Structure with a Guard Band for Suppressing Electromagnetic Radiation

    Yoshiki KAYANO  Motoshi TANAKA  Hiroshi INOUE  

     
    PAPER-Printed Circuit Boards

      Vol:
    E88-B No:8
      Page(s):
    3182-3188

    Electromagnetic (EM) radiation from a feed cable attached to a printed circuit board (PCB), which is commonly encountered electromagnetic interference (EMI) problem at high-speed electronic PCB designs, is investigated by experimental and finite-difference time-domain (FDTD) modeling. In this paper, we propose and demonstrate a guard-band structure as a method for suppressing the EM radiation from a PCB with a feed cable. A signal trace is located between two ground traces (guard-band: GB). Four different cross-sectional PCB structures, which are commonly used in microwave integrated circuits as typical structures, are used to compare the guard-band structure. Frequency response of common-mode (CM) current, electric field near a PCB, and far electric field (radiated emission) are investigated as characteristics of the EMI. Results show that the shield structure is effective in suppressing the CM current at lower frequency. However, structures in which a conductive plate exists near the signal trace yield resonances with high level peak on CM current, near and far-field. On the other hand, the guard-band structure is more effective than other structures in suppressing the EM radiation in the considered frequency range. Therefore the guard-band will be effective for high-density PCB packaging with high-speed traces.

  • An X-Band Microstrip Phase Shifter Using an Electromagnetic Bandgap Backplane

    Dowon KIM  Moonil KIM  Hao XIN  Jon B. HACKER  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E88-B No:6
      Page(s):
    2632-2635

    A new microstrip compatible phase shifter circuit is introduced. The phase shifter uses a strip-type electromagnetic bandgap (EBG) substrate in place of the solid metal ground plane. Such EBG substrates, when made of ferroelectric materials, can produce variable phase constants useful for phase shifter applications. Test models using two different EBG substrates with dielectric constants of 9.2 and 10.2 showed 44.5 degrees of phase difference with 1.7 dB of added insertion loss at 10 GHz from a line originally 504 degrees long.

  • Antennas and Propagation in the Presence of Metamaterials and Other Complex Media: Computational Electromagnetic Advances and Challenges

    Richard W. ZIOLKOWSKI  

     
    INVITED PAPER

      Vol:
    E88-B No:6
      Page(s):
    2230-2238

    There have been significant advances in computational electromagnetics (CEM) in the last decade for a variety of antennas and propagation problems. Improvements in single frequency techniques including the finite element method (FEM), the fast mulitipole moment (FMM) method, and the method of moments (MoM) have led to significant simulation capabilities on basic computing platforms. Similar advances have occurred with time domain methods including finite difference time domain (FDTD) methods, time domain integral equation (TDIE) methods, and time domain finite element (TD-FEM) methods. Very complex radiating and scattering structures in the presence of complex materials have been modeled with many of these approaches. Many commercial products have been made available through the efforts of many individuals. The CEM simulators have enabled virtual EM test ranges that have led to dramatic improvements in our understanding of antennas and propagation in complex environments and to the realization of many of their important applications.

181-200hit(341hit)