The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] electromagnetic(341hit)

261-280hit(341hit)

  • The Future of EMC Technology

    Shuichi NITTA  

     
    INVITED PAPER

      Vol:
    E83-B No:3
      Page(s):
    435-443

    This paper reviews the present EMC technology level, introduces the problems to be investigated in the near future from the viewpoint of design technology, test and measurement and systems safety, and proposes what is a goal of technology level of EMC to be established for circuits, equipments and systems.

  • FDTD Analysis of Dosimetry in Human Head Model for a Helical Antenna Portable Telephone

    Jianqing WANG  Osamu FUJIWARA  

     
    PAPER-EMC Simulation

      Vol:
    E83-B No:3
      Page(s):
    549-554

    This paper presents a dosimetric analysis in an anatomically realistic human head model for a helical antenna portable telephone by using the finite-difference time-domain (FDTD) method. The head model, developed from magnetic resonance imaging (MRI) data of a Japanese adult head, consists of 530 thousand voxels, of 2 mm dimensions, segmented into 15 tissue types. The helical antenna was modeled as a stack of dipoles and loops with an adequate relative weight, whose validity was confirmed by comparing the calculated near magnetic fields with published measured data. SARs are given both for the spatial peak value in the whole head and the averages in various major organs.

  • Requirements for Controlling Coverage of 2.4-GHz-Band Wireless LANs by Using Partitions with Absorbing Board

    Yuji MAEDA  Kazuhiro TAKAYA  Nobuo KUWABARA  

     
    PAPER-EMC Simulation

      Vol:
    E83-B No:3
      Page(s):
    525-531

    For a wireless communication system to work effectively without interference, the electromagnetic environment needs to be controlled. We experimentally and analytically investigated the requirements for controlling the electrical field strength and delay spread so as to achieve the best communication without electromagnetic interference in selected regions for a 2.4-GHz-band wireless LAN system. To control the coverage, partitions were placed around desks in a test environment and covered on the inside with electromagnetic absorbing board from the top of the desks to the top of the partitions; four indoor environments that combined one of two wall-material types and one of two partition heights were used. The transmission loss and delay spread were measured, then calculated using ray tracing to verify the effectiveness of using ray-tracing calculation. The throughput and BER characteristics were measured for the same environments to clarify the requirements for controlling the coverage. We found that covered and uncovered regions could be created by using partitions with absorbing boards and that the delay spread must be less than 15 ns and the received-signal must be stronger than -75 dBm for a region to be covered. We verified that the delay spread can be calculated to within 5 ns and the received-signal level can be calculated to within 5 dB of the measured data by using ray tracing. Therefore, ray tracing can be used to design antenna positions and indoor environments where electromagnetic environments are controlled for 2.4-GHz-band wireless LAN systems.

  • Fuzzy Inference in Engineering Electromagnetics: An Application to Conventional and Angled Monopole-Antenna

    Majid TAYARANI  Yoshio KAMI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E83-C No:1
      Page(s):
    85-97

    The abilities of fuzzy inference methods in modeling of complicated systems are implemented to electromagnetics for the first time. The very popular and well known monopole antenna is chosen as a general example and a fast, simple and accurate fuzzy model for its input impedance is made by introducing a new point of view to impedance basic parameters. It is established that a surprisingly little number of input data points is sufficient to make a full model and also the system behavior (dominant rules) are saved as simple membership functions. The validity of the derived rules is confirmed through applying them to the case of thin-angled monopole antenna and comparing the results with the measured. Finally using the spatial membership function context, input impedance of thick-angled monopole antenna is predicted and a novel view point to conventional electromagnetic parameters is discussed to generalize the modeling method.

  • Scattering and Absorption of Electromagnetic Plane Waves by a Multilayered Resistive Strip Grating Embedded in a Dielectric Slab

    Tatyana L. ZINENKO  Akira MATSUSHIMA  Yoichi OKUNO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E82-C No:12
      Page(s):
    2255-2264

    An accurate and efficient numerical solution is presented for a two-dimensional electromagnetic wave scattering from a multilayered resistive strip grating embedded in a dielectric slab. Both E- and H-waves are treated. The problem is formulated into a set of integral equations, which is solved by the moment method accompanied by a regularization procedure. The resultant set of linear algebraic equations has the form of the Fredholm second kind, and therefore yields stable and accurate numerical solutions. The power distribution is computed for several grating parameters. Attention is paid to seek a set of parameters that maximizes absorption in the strips. The low frequency approximate formulas are also derived. This analysis would be useful in designing electromagnetic wave absorbers.

  • A Compact Plastic Package with High RF Isolation by Subsidiary Inner Ground Leads

    Hidetoshi ISHIDA  Kazuo MIYATSUJI  Tsuyoshi TANAKA  Daisuke UEDA  Chihiro HAMAGUCHI  

     
    PAPER-RF Assembly Technology

      Vol:
    E82-C No:11
      Page(s):
    2044-2049

    A novel method to obtain a compact plastic package with higher isolation by providing subsidiary inner ground leads between outer leads is proposed and demonstrated. The effect of the subsidiary ground leads is investigated by using a 3-dimensional electromagnetic field simulation and measuring the fabricated packages. Newly designed package with subsidiary ground leads achieves higher isolation by more than 10 dB at 3 GHz as compared to a conventional package. This package is applied to GaAs SPDT switch IC's. Isolation of the switch IC's is improved by 5 dB at 3 GHz by the subsidiary inner ground leads. The isolation characteristics are discussed based on the equivalent circuit extracted from the simulation results.

  • Millimeter-Wave Flip-Chip MMIC Structure with High Performance and High Reliability Interconnects

    Masaharu ITO  Kenichi MARUHASHI  Hideki KUSAMITSU  Yoshiaki MORISHITA  Keiichi OHATA  

     
    PAPER-RF Assembly Technology

      Vol:
    E82-C No:11
      Page(s):
    2038-2043

    The flip-chip structure for millimeter-wave MMICs has been investigated to obtain high performance and high reliability. In our approach, an air gap between the MMIC and the alumina substrate was determined so as not to change electrical characteristics from those of the unflipped MMIC. We calculated the proximity effect between the MMIC and the substrate by using 3D-electromagnetic simulator, and found that the air gap should be controlled to be greater than 20 µm. Since the discontinuity of transmission lines at bump interconnects is not negligible above 60 GHz, we constructed the LCR-equivalent circuit for the bump interconnect and confirmed its validity by comparing measurement with calculation. Based on these investigations, the 60- and 76-GHz-band CPW three-stage low noise amplifiers were successfully mounted on the alumina substrate using a thermal compression bonding process. The gain of the flipped 60- and 76-GHz-band MMICs are greater than 18 dB at around 60 GHz and 17 dB at around 76 GHz, respectively. The noise figures are 3.6 dB and 3.9 dB, respectively. The gain and noise performances showed little degradation compared to those of the unflipped MMICs when appropriate bonding conditions are given. We confirmed that the flip-chip structure has high reliability under a thermal cycle test. From these results, flip-chip technology is promising for millimeter-wave applications.

  • A Novel Layout Optimization Technique for Miniaturization and Accurate Design of MMICs

    Shin CHAKI  Yoshinobu SASAKI  Naoto ANDOH  Yasuharu NAKAJIMA  Kazuo NISHITANI  

     
    INVITED PAPER-Low Power-Consumption RF ICs

      Vol:
    E82-C No:11
      Page(s):
    1960-1967

    This paper describes a novel layout optimization technique using electromagnetic (EM) simulation. Simple equivalent circuits fitted to EM simulation results are employed in this method, to present a modification guide for a layout pattern. Fitting errors are also investigated with some layout patterns in order to clarify the applicable range of the method, because the errors restrict the range. The method has been successfully adopted to an X-band low noise MMIC amplifier (LNA). The layout pattern of the amplifier was optimized in only two days and the amplifier has achieved target performances--a 35 dB gain and a 1.7 dB noise figure--in one development cycle. The effective chip area has been miniaturized to 4.8 mm2. The area could be smaller than 70% in comparison with a conventional layout MMIC.

  • Analysis of Modified Luneberg Lens Using Exact Solutions

    Haruo SAKURAI  Makoto OHKI  Shogo KOZAKI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E82-C No:10
      Page(s):
    1846-1852

    Analytical solutions have been obtained for the electromagnetic scattering by a modified Luneberg lens with the permittivity of arbitrary parabolic function. They are expressed by four spherical vector wave functions for radially stratified medium which were introduced for the Luneberg lens by C. T. Tai. They consist of the confluent hypergeometric function and a "generalized" confluent hypergeometric function, in which the parameters for the permittivity of arbitrary parabolic function are involved. The characteristics of the modified Luneberg lens are numerically investigated using exact solutions in comparison with that of the conventional Luneberg lens. The bistatic cross section, the forward cross section and the radar cross section are studied in detail. The near-field distribution is also investigated in order to study the focal properties of the Luneberg lens. The focal shifts defined by the distance between the geometrical focal point and the electromagnetic focal point are obtained for various ka (k is the wave number and a is the radius of the lens). The focal shift normalized to the radius of the sphere becomes larger as ka is smaller. However it drops down rapidly for ka5 when the peak of the electric field amplitude appears on the surface of sphere.

  • Application of Mix-Phase Wavelets to Sparsify Impedance Matrices

    Jiunn-Ming HUANG  Jeng-Long LEOU  Shyh-Kang JENG  Jenn-Hwan TARNG  

     
    LETTER-Optical Communication

      Vol:
    E82-B No:10
      Page(s):
    1688-1693

    Effective wavelets to solve electromagnetic integral equations are proposed. It is based on the same construction procedure as Daubechies wavelets but with mix-phase to obtain maximum sparsity of moment matrix. These new wavelets are proved to have excellent performance in non-zero elements reduction in comparison with minimum-phase wavelet transform (WT). If further sparsity is concerned, wavelet packet (WP) transform can be applied but increases the computational complexity. In some cases, the capability of non-zero elements reduction by this new wavelets even better than WP with minimum-phase wavelets and with less computational efforts. Numerical experiments demonstrate the validity and effectiveness of the new wavelets.

  • Transient Phenomena of Electromagnetic Waves by the Abrupt Extinction of Interior Terminative Conducting Screen in Waveguide

    Michinari SHIMODA  Ryuichi IWAKI  Masazumi MIYOSHI  Oleg A. TRETYAKOV  

     
    PAPER-Electromagnetic Theory

      Vol:
    E82-C No:8
      Page(s):
    1584-1591

    The problem of transient scattering caused by abrupt extinction of a terminative conducting screen in a waveguide is considered. First, a boundary-value problem is formulated to describe the transient phenomena, the problem in which the boundary condition depends on time. Then, application of the Fourier transformation with respect to time derives a Wiener-Hopf-type equation, which is solved by a commonly known decomposition procedure. The transient fields are obtained through the deformation of the integration path for the inverse transformation and the results are represented in terms of the incomplete Lipschitz-Hankel integrals. Numerical examples showing typical transient phenomena are attached.

  • Ribbon-Wire Interconnect Using Parasitic Element

    Hajime IZUMI  Hiroyuki ARAI  Tatsuo ITOH  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E82-C No:4
      Page(s):
    662-664

    This paper presents a contact-less connector using proximity coupling through a parasitic element. For example, proximity coupling is used for interconnect of microstrip lines for DC-break structure. We also present a cross wiring structure using this interconnect.

  • New Technologies Doing Much for Solving the EMC Problem in the High Performance Digital PCBs and Equipment

    Hirokazu TOHYA  

     
    PAPER

      Vol:
    E82-A No:3
      Page(s):
    450-456

    This paper is consisting of the two novel EMC technologies that we have been developed in our laboratory. The first is the technology for measuring the RF (Radio Frequency) nearby magnetic field and estimation of the RF current in the printed circuit board (PCB) by using the small loop antenna with multi-layer PCB structure developed by our laboratory. I introduce the application of our small loop antenna with its physical structure and the analysis of the nearby magnetic field distribution of the printed circuit board applying the discrete Wavelet analysis. We can understand the behavior of the digital circuit in detail, and we can also take measures to meet the specification about the electromagnetic radiation from the digital circuit from the higher order of priority by using these technologies. The second is our proposing novel technology for reducing the electromagnetic radiation from the digital equipment by taking notice of the improvement of the de-coupling in the PCB. We confirmed the remarkable effect of this technology by redesigning the motherboard of the small-sized computer.

  • A Generation Method of Electromagnetic Fields Rotating at a Low Speed for the Immunity Test

    Kimitoshi MURANO  Yoshio KAMI  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E82-B No:3
      Page(s):
    567-569

    A novel method for the radiated immunity test is proposed. The method is to generate controlled electromagnetic fields applying in arbitrary directions to an under test. The fields rotate at a low speed controlled electrically so that the immunity characteristics may be known in more detail. The primal characteristics of the fields generated by a trial benchtop setup are investigated.

  • A Fundamental Study on Effect of Contact Condition for Electromagnetic Noise at Copper-Carbon Electrodes

    Yasuo EBARA  Toshiaki KOIZUMI  Hideaki SONE  Yoshiaki NEMOTO  

     
    PAPER

      Vol:
    E82-C No:1
      Page(s):
    49-54

    The authors observed the correlation between electromagnetic noise and trace of discharge on surface for various surface areas of Cu in opening copper (Cu)-carbon (C) electrodes. In the case of Cu (anode)-C (cathode), the duration of sporadic burst noise generated by discharge becomes longer when Cu surface area is increased, and trace of discharge (melting area) distribute widely on electrodes. Also the forms of the burst noise in the start of arc are classified, and the traces of discharge correspond to each forms. The forms of the burst noise depend on the pattern which the trace of discharge are formed. As these results, the authors showed the correlation between form of burst noise and trace of discharge on electrode surface.

  • Noncubic Cell Time-Domain Analysis of Scattering by Dielectric Cylinders

    Norihiko HARADA  Mitsuo HANO  

     
    PAPER

      Vol:
    E81-C No:12
      Page(s):
    1779-1783

    We have proposed an algorithm to apply perfectly matched layer (PML) absorbing boundary condition to the noncubic cell time-domain method. The extended method has a merit of flexibility in truncating the computational domain by the use of a curvilinear PML. In this paper we apply a circular PML for computing the scattered fields of a dielectric cylinder or cylindrical shell of arbitrary cross section shape. Numerical results are presented to demonstrate the accuracy of this method.

  • An Efficient Finite Element-Integral Equation Method for Electromagnetic Scattering from Metallic Cylinders with Arbitrary Cross Sections

    Fengchao XIAO  Hatsuo YABE  

     
    PAPER-Electromagnetic Theory

      Vol:
    E81-C No:10
      Page(s):
    1648-1654

    An efficient finite element-integral equation method is presented for calculating scattered fields from conducting objects. By combining the integral equation solution with the finite element method, this formulation allows a finite element computational domain terminated very closely to the scatterer and thus results in the decrease of the resultant matrix size. Furthermore, we employ a new integral approach to establish the boundary condition on the finite element terminating surface. The expansion of the fields on the integration contour is not related to the fields on the terminating surface, hence we obtain an explicit expression of the boundary condition on the terminating surface. Using this explicit boundary condition with the finite element solution, our method substantially improves the computational efficiency and relaxes the computer memory requirements. Only one matrix inversion is needed through our formulation and the generation and storing of a full matrix is not necessary as compared with the conventional hybrid finite element methods. The validity and accuracy of the formulation are checked by some numerical solutions of scattering from two-dimensional metallic cylinders, which are compared with the results of other methods and/or measured data.

  • Generation of the Standard EM Fields with Arbitrary Wave Impedance at the Center of a TEM Cell

    Jae-Hoon YUN  Hyuck-Jae LEE  Jung-Ki KIM  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E81-B No:6
      Page(s):
    1286-1289

    A technique for generating the standard EM fields with arbitrary wave impedance at the center of a TEM cell is proposed in this letter. We can realize the experimental system and obtain the measured results to agree well with the calculated results. This technique is useful for the EMS test and the calibration of EM probe because the wave impedance can be easily adjusted only with step attenuator.

  • On the Hilberts Technique for Use in Diffraction Problems Described in Terms of Bicomplex Mathematics

    Masahiro HASHIMOTO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E81-C No:2
      Page(s):
    315-318

    It is shown from the Hilberts theory that if the real function Π(θ) has no zeros over the interval [0, 2π], it can be factorized into a product of the factor π+(θ) and its complex conjugate π-(θ)(=). This factorization is tested to decompose a real far-zone field pattern having zeros. To this end, the factorized factors are described in terms of bicomplex mathematics. In our bicomplex mathematics, the temporal imaginary unit "j" is newly defined to distinguish from the spatial imaginary unit i, both of which satisfy i2=-1 and j2=-1.

  • Analysis of Electromagnetic Field inside Equipment Housing with an Aperture

    Hiroaki KOGURE  Hideki NAKANO  Kohji KOSHIJI  Eimei SHU  

     
    PAPER

      Vol:
    E80-B No:11
      Page(s):
    1620-1624

    This paper presents a method of analyzing the electromagnetic field inside an equipment housing. The electromagnetic field is assumed to be coming from outside and coupled into the housing through an aperture on the housing surface. The analysis is based on the transmission-line modeling method. Results of the analysis show a good agreement with the results of measurement. Also, it is found that the coupling through the aperture shows peaks at some frequencies that depend almost only on the structure of the housing and aperture and, therefore, can be estimated at the time of equipment design.

261-280hit(341hit)