The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] electrostatic discharge (ESD)(14hit)

1-14hit
  • A Novel Technique to Suppress Multiple-Triggering Effect in Typical DTSCRs under ESD Stress Open Access

    Lizhong ZHANG  Yuan WANG  Yandong HE  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/11/29
      Vol:
    E103-C No:5
      Page(s):
    274-278

    This work reports a new technique to suppress the undesirable multiple-triggering effect in the typical diode triggered silicon controlled rectifier (DTSCR), which is frequently used as an ESD protection element in the advanced CMOS technologies. The technique is featured by inserting additional N-Well areas under the N+ region of intrinsic SCR, which helps to improve the substrate resistance. As a consequence, the delay of intrinsic SCR is reduced as the required triggering current is largely decreased and multiple-triggering related higher trigger voltage is removed. The novel DTSCR structures can alter the stacked diodes to achieve the precise trigger voltage to meet different ESD protection requirements. All explored DTSCR structures are fabricated in a 65-nm CMOS process. Transmission-line-pulsing (TLP) and Very-Fast-Transmission-line-pulsing (VF-TLP) test systems are adopted to confirm the validity of this technique and the test results accord well with our analysis.

  • Silicon Controlled Rectifier Based Partially Depleted SOI ESD Protection Device for High Voltage Application

    Yibo JIANG  Hui BI  Hui LI  Zhihao XU  Cheng SHI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/10/09
      Vol:
    E103-C No:4
      Page(s):
    191-193

    In partially depleted SOI (PD-SOI) technology, the SCR-based protection device is desired due to its relatively high robustness, but be restricted to use because of its inherent low holding voltage (Vh) and high triggering voltage (Vt1). In this paper, the body-tie side triggering diode inserting silicon controlled rectifier (BSTDISCR) is proposed and verified in 180 nm PD-SOI technology. Compared to the other devices in the same process and other related works, the BSTDISCR presents as a robust and latchup-immune PD-SOI ESD protection device, with appropriate Vt1 of 6.3 V, high Vh of 4.2 V, high normalized second breakdown current (It2), which indicates the ESD protection robustness, of 13.3 mA/µm, low normalized parasitic capacitance of 0.74 fF/µm.

  • Latch-Up Immune Bi-Direction ESD Protection Clamp for Push-Pull RF Power Amplifier

    Yibo JIANG  Hui BI  Wei ZHAO  Chen SHI  Xiaolei WANG  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/10/09
      Vol:
    E103-C No:4
      Page(s):
    194-196

    For the RF power amplifier, its exposed input and output are susceptible to damage from Electrostatic (ESD) damage. The bi-direction protection is required at the input in push-pull operating mode. In this paper, considering the process compatibility to the power amplifier, cascaded Grounded-gate NMOS (ggNMOS) and Polysilicon diodes (PDIO) are stacked together to form an ESD clamp with forward and reverse protection. Through Transmission line pulse (TLP) and CV measurements, the clamp is demonstrated as latch-up immune and low parasitic capacitance bi-direction ESD protection, with 18.67/17.34V holding voltage (Vhold), 4.6/3.2kV ESD protection voltage (VESD), 0.401/0.415pF parasitic capacitance (CESD) on forward and reverse direction, respectively.

  • Design and Impact on ESD/LU Immunities by Drain-Side Super-Junction Structures in Low-(High-)Voltage MOSFETs for the Power Applications

    Shen-Li CHEN  Yu-Ting HUANG  Shawn CHANG  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:3
      Page(s):
    143-150

    In this study, the reference pure metal-oxide semiconductor field-effect transistors (MOSFETs) and low-voltage (LV) and high-voltage (HV) MOSFETs with a super-junction (SJ) structure in the drain side were experimentally compared. The results show that the drain-side engineering of SJs exerts negative effects on the electrostatic discharge (ESD) and latch-up (LU) immunities of LV n-channel MOSFETs, whereas for LV p-channel MOSFETs and HV n-channel laterally diffused MOSFETs (nLDMOSs), the effects are positive. Compared with the pure MOSFET, electrostatic discharge (ESD) robustness (It2) decreased by approximately 30.25% for the LV nMOS-SJ, whereas It2 increased by approximately 2.42% and 46.63% for the LV pMOS-SJ and HV nLDMOS-SJ, respectively; furthermore, LU immunity (Vh) decreased by approximately 5.45% for the LV nMOS-SJ, whereas Vh increased by approximately 0.44% and 35.5% for the LV pMOS-SJ and HV nLDMOS-SJ, respectively. Thus, nMOS-SJ (pMOS-SJ and nLDMOS-SJ) has lower (higher) It2 and Vh, and this drain-side SJ structure of MOSFETs is an inferior (superior) choice for improving the ESD/LU reliability of LV nMOSs (LV pMOS and HV nLDMOS).

  • Design of High-ESD Reliability in HV Power pLDMOS Transistors by the Drain-Side Isolated SCRs

    Shen-Li CHEN  Yu-Ting HUANG  Yi-Cih WU  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    446-452

    Improving robustness in electrostatic discharge (ESD) protection by inserting drain-side isolated silicon-controlled rectifiers (SCRs) in a high-voltage (HV) p-channel lateral-diffused MOSFET (pLDMOS) device was investigated in this paper. Additionally, the effects of anti-ESD reliability in the HV pLDMOS transistors provided by this technique were evaluated. From the experimental data, it was determined that the holding voltage (Vh) values of the pLDMOS with an embedded npn-arranged SCR and discrete thin-oxide (OD) layout on the cathode side increased as the parasitic SCR OD row number decreased. Moreover, the trigger voltage (Vt1) and the Vh values of the pLDMOS with a parasitic pnp-arranged SCR and discrete OD layout on the drain side fluctuated slightly as the SCR OD-row number decreased. Furthermore, the secondary breakdown current (It2) values (i.e., the equivalent ESD-reliability robustness) of all pLDMOS-SCR npn-arranged types increased (>408.4%) to a higher degree than those of the pure pLDMOS, except for npn-DIS_3 and npn-DIS_2, which had low areas of SCRs. All pLDMOS-SCR pnp-arranged types exhibited an increase of up to 2.2A-2.4A, except for the pnp_DIS_3 and pnp_DIS_2 samples; the pnp_DIS_91 increased by approximately 2000.9% (249.1%), exhibiting a higher increase than that of the reference pLDMOS (i.e., the corresponding pnp-stripe type). The ESD robustness of the pLDMOS-SCR pnp-arranged type and npn-arranged type with a discrete OD layout on the SCR cathode side was greater than that of the corresponding pLDMOS-SCR stripe type and a pure pLDMOS, particularly in the pLDMOS-SCR pnp-arranged type.

  • Power-Rail ESD Clamp Circuit with Parasitic-BJT and Channel Parallel Shunt Paths to Achieve Enhanced Robustness

    Yuan WANG  Guangyi LU  Yize WANG  Xing ZHANG  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E100-C No:3
      Page(s):
    344-347

    This work reports a novel power-rail electrostatic discharge (ESD) clamp circuit with parasitic bipolar-junction-transistor (BJT) and channel parallel shunt paths. The parallel shunt paths are formed by delivering a tiny ratio of drain voltage to the gate terminal of the clamp device in ESD events. Under such a mechanism, the proposed circuit achieves enhanced robustness over those of both gate-grounded NMOS (ggNMOS) and the referenced gate-coupled NMOS (gcNMOS). Besides, the proposed circuit also achieves improved fast power-up immunity over that of the referenced gcNMOS. All investigated designs are fabricated in a 65-nm CMOS process. Transmission-line-pulsing (TLP) and human-body-model (HBM) test results have both confirmed the performance enhancements of the proposed circuit. Finally, the validity of the achieved performance enhancements on other trigger circuits is essentially revealed in this work.

  • Optimization on Layout Strategy of Gate-Grounded NMOS for On-Chip ESD Protection in a 65-nm CMOS Process

    Guangyi LU  Yuan WANG  Xing ZHANG  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:5
      Page(s):
    590-596

    Layout strategies including source edge to substrate space (SESS) and inserted substrate-pick stripes of gate-grounded NMOS(ggNMOS) are optimized in this work for on-chip electrostatic discharge (ESD) protection. In order to fully investigate influences of substrate resistors on triggering and conduction behaviors of ggNMOS, various devices are designed and fabricated in a 65-nm CMOS process. Direct current (DC), transmission-line-pulsing (TLP), human body model (HBM) and very-fast TLP (VF-TLP) tests are executed to fully characterize performance of fabricated ggNMOS. Test results reveal that an enlarged SESS parameter results in an earlier triggering behavior of ggNMOS, which presents a layout option for subtle adjustable triggering behaviors. Besides, inserted substrate-pick stripes are proved to have a bell-shape influence on the ESD robustness of ggNMOS and this bell-shape influence is valid in TLP, HBM and VF-TLP tests. Moreover, the most ESD-robust ggNMOS optimized under different inserted substrate-pick stripes always achieves a higher HBM level over the traditional ggNMOS at each concerned total device-width. Physical mechanisms of test results will be deeply discussed in this work.

  • A Non-snapback ESD Protection Clamp Circuit Using Isolated Parasitic Capacitance in a 0.35 µm Bipolar-CMOS-DMOS Process

    Jae-Young PARK  Dae-Woo KIM  Young-Sang SON  Jong-Kyu SONG  Chang-Soo JANG  Won-Young JUNG  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    796-801

    A novel NMOS Electrostatic Discharge (ESD) clamp circuit is proposed for a 0.35 µm Bipolar-CMOS-DMOS (BCD) process. The proposed ESD clamp has a non-snapback characteristic because of gate-coupled effect. This proposed ESD clamp circuit is developed without additional components made possible by replacing a capacitor with an isolated parasitic capacitor. The result of the proposed ESD clamp circuit is measured by 100 ns Transmission Line Pulse (TLP) system. From the measurement, it was observed that the proposed ESD clamp has approximately 40% lower triggering voltage compared to the conventional gate-grounded NMOS ESD clamp. This is achieved without degradation of the other ESD design key parameter. The proposed ESD clamp also has high robustness characteristics compared to the conventional RC-triggered NMOS ESD clamp circuit.

  • An Unassisted Low-Voltage-Trigger ESD Protection Structure in a 0.18-µm CMOS Process without Extra Process Cost

    Bing LI  Yi SHAN  

     
    PAPER-Integrated Electronics

      Vol:
    E93-C No:8
      Page(s):
    1359-1364

    In order to quickly discharge the electrostatic discharge (ESD) energy, an unassisted low-voltage-trigger ESD protection structure is proposed in this work. Under transmission line pulsing (TLP) stress, the trigger voltage, turn-on speed and second breakdown current can be obviously improved, as compared with the traditional protection structure. Moreover there is no need to add any extra mask or do any process modification for the new structure. The proposed structure has been verified in foundry's 0.18-µm CMOS process.

  • On-Chip Charged Device Model ESD Protection Design Method Using Very Fast Transmission Line Pulse System for RF ICs

    Jae-Young PARK  Jong-Kyu SONG  Dae-Woo KIM  Chang-Soo JANG  Won-Young JUNG  Taek-Soo KIM  

     
    PAPER-Analog/RF Devices

      Vol:
    E93-C No:5
      Page(s):
    625-630

    An on-chip Charged Device Model (CDM) ESD protection method for RF ICs is proposed in a 0.13 µm RF process and evaluated by using very fast Transmission Line Pulse (vf-TLP) system. Key design parameters such as triggering voltage (Vt1) and the oxide breakdown voltage from the vf-TLP measurement are used to design input ESD protection circuits for a RF test chip. The characterization and the behavior of a Low Voltage Triggered Silicon Controlled Rectifier (SCR) which used for ESD protection clamp under vf-TLP measurements are also reported. The results measured by vf-TLP system showed that the triggering voltage decreased and the second breakdown current increased in comparison with the results measured by a standard 100 ns TLP system. From the HBM/ CDM testing, the RF test chip successfully met the requested RF ESD withstand level, HBM 1 kV, MM 100 V and CDM 500 V.

  • Design of SCR-Based ESD Protection Device for Power Clamp Using Deep-Submicron CMOS Technology

    Yongseo KOO  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:9
      Page(s):
    1188-1193

    The novel SCR-based (silicon controlled rectifier) device for ESD power clamp is presented in this paper. The proposed device has a high holding voltage and a high triggering current characteristic. These characteristics enable latch-up immune normal operation as well as superior full chip ESD protection. The device has a small area in requirement robustness in comparison to ggNMOS (gate grounded NMOS). The proposed ESD protection device is designed in 0.25 µm and 0.5 µm CMOS Technology. In the experimental result, the proposed ESD clamp has a double trigger characteristic, a high holding voltage of 4 V and a high trigger current of above 350 mA. The robustness has measured to HBM 8 kV (HBM: Human Body Model) and MM 400 V (MM: Machine Model). The proposed device has a high level It2 of 52 mA/ µm approximately.

  • Impedance-Isolation Technique for ESD Protection Design in RF Integrated Circuits

    Ming-Dou KER  Yuan-Wen HSIAO  

     
    PAPER-Electronic Components

      Vol:
    E92-C No:3
      Page(s):
    341-351

    An impedance-isolation technique is proposed for on-chip ESD protection design for radio-frequency (RF) integrated circuits (ICs), which has been successfully verified in a 0.25-µm CMOS process with thick top-layer metal. With the resonance of LC-tank at the operating frequency of the RF circuit, the impedance (especially, the parasitic capacitance) of the ESD protection devices can be isolated from the RF input node of low-noise amplifier (LNA). Therefore, the LNA can be co-designed with the proposed impedance-isolation technique to simultaneously achieve excellent RF performance and high ESD robustness. The power gain (S21-parameter) and noise figure of the ESD protection circuits with the proposed impedance-isolation technique have been experimentally measured and compared to those with the conventional double-diodes ESD protection scheme. The proposed impedance-isolation technique had been demonstrated to be suitable for on-chip ESD protection design for RF ICs.

  • Low-Capacitance and Fast Turn-on SCR for RF ESD Protection

    Chun-Yu LIN  Ming-Dou KER  Guo-Xuan MENG  

     
    PAPER

      Vol:
    E91-C No:8
      Page(s):
    1321-1330

    With the smaller layout area and parasitic capacitance under the same electrostatic discharge (ESD) robustness, silicon-controlled rectifier (SCR) has been used as an effective on-chip ESD protection device in radio-frequency (RF) IC. In this paper, SCR's with the waffle layout structures are studied to minimize the parasitic capacitance and the variation of the parasitic capacitance within ultra-wide band (UWB) frequencies. With the reduced parasitic capacitance and capacitance variation, the degradation on UWB RF circuit performance can be minimized. Besides, the fast turn-on design on the low-capacitance SCR without increasing the I/O loading capacitance is investigated and applied to an UWB RF power amplifier (PA). The PA co-designed with SCR in the waffle layout structure has been fabricated. Before ESD stress, the RF performances of the ESD-protected PA are as well as that of the unprotected PA. After ESD stress, the unprotected PA is seriously degraded, whereas the ESD-protected PA still keeps the performances well.

  • MOS-Bounded Diodes for On-Chip ESD Protection in Deep Submicron CMOS Process

    Ming-Dou KER  Kun-Hsien LIN  Che-Hao CHUANG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E88-C No:3
      Page(s):
    429-436

    New diode structures without the field-oxide boundary across the p/n junction for ESD protection are proposed. A NMOS (PMOS) is especially inserted into the diode structure to form the NMOS-bounded (PMOS-bounded) diode, which is used to block the field oxide isolation across the p/n junction in the diode structure. The proposed N(P)MOS-bounded diodes can provide more efficient ESD protection to the internal circuits, as compared to the other diode structures. The N(P)MOS-bounded diodes can be used in the I/O ESD protection circuits, power-rail ESD clamp circuits, and the ESD conduction cells between the separated power lines. From the experimental results, the human-body-model ESD level of ESD protection circuit with the proposed N(P)MOS-bounded diodes is greater than 8 kV in a 0.35-µm CMOS process.