The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] error-correcting(40hit)

1-20hit(40hit)

  • Joint BCH and XOR Decoding for Solid State Drives

    Naoko KIFUNE  Hironori UCHIKAWA  

     
    PAPER-Coding Theory

      Pubricized:
    2023/04/12
      Vol:
    E106-A No:10
      Page(s):
    1322-1329

    At a flash memory, each stored data frame is protected by error correction codes (ECC) such as Bose-Chaudhuri-Hocquenghem (BCH) codes from random errors. Exclusive-OR (XOR) based erasure codes like RAID-5 have also been employed at the flash memory to protect from memory block defects. Conventionally, the ECC and erasure codes are used separately since their target errors are different. Due to recent aggressive technology scaling, additional error correction capability for random errors is required without adding redundancy. We propose an algorithm to improve error correction capability by using XOR parity with a simple counter that counts the number of unreliable bits in the XOR stripe. We also propose to apply Chase decoding to the proposed algorithm. The counter makes it possible to reduce the false correction and execute the efficient Chase decoding. We show that combining the proposed algorithm with Chase decoding can significantly improve the decoding performance.

  • On the Limitations of Computational Fuzzy Extractors

    Kenji YASUNAGA  Kosuke YUZAWA  

     
    LETTER

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:3
      Page(s):
    350-354

    We present a negative result of fuzzy extractors with computational security. Specifically, we show that, under a computational condition, a computational fuzzy extractor implies the existence of an information-theoretic fuzzy extractor with slightly weaker parameters. Our result implies that to circumvent the limitations of information-theoretic fuzzy extractors, we need to employ computational fuzzy extractors that are not invertible by non-lossy functions.

  • Multi Deletion/Substitution/Erasure Error-Correcting Codes for Information in Array Design

    Manabu HAGIWARA  

     
    PAPER-Coding Theory and Techniques

      Pubricized:
    2022/09/21
      Vol:
    E106-A No:3
      Page(s):
    368-374

    This paper considers error-correction for information in array design, i.e., two-dimensional design such as QR-codes. The error model is multi deletion/substitution/erasure errors. Code construction for the errors and an application of the code are provided. The decoding technique uses an error-locator for deletion codes.

  • LDPC Codes for Communication Systems: Coding Theoretic Perspective Open Access

    Takayuki NOZAKI  Motohiko ISAKA  

     
    INVITED SURVEY PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/02/10
      Vol:
    E105-B No:8
      Page(s):
    894-905

    Low-density parity-check (LDPC) codes are widely used in communication systems for their high error-correcting performance. This survey introduces the elements of LDPC codes: decoding algorithms, code construction, encoding algorithms, and several classes of LDPC codes.

  • Linking Reversed and Dual Codes of Quasi-Cyclic Codes Open Access

    Ramy TAKI ELDIN  Hajime MATSUI  

     
    PAPER-Coding Theory

      Pubricized:
    2021/07/30
      Vol:
    E105-A No:3
      Page(s):
    381-388

    It is known that quasi-cyclic (QC) codes over the finite field Fq correspond to certain Fq[x]-modules. A QC code C is specified by a generator polynomial matrix G whose rows generate C as an Fq[x]-module. The reversed code of C, denoted by R, is the code obtained by reversing all codewords of C while the dual code of C is denoted by C⊥. We call C reversible, self-orthogonal, and self-dual if R = C, C⊥ ⊇ C, and C⊥ = C, respectively. In this study, for a given C, we find an explicit formula for a generator polynomial matrix of R. A necessary and sufficient condition for C to be reversible is derived from this formula. In addition, we reveal the relations among C, R, and C⊥. Specifically, we give conditions on G corresponding to C⊥ ⊇ R, C⊥ ⊆ R, and C = R = C⊥. As an application, we employ these theoretical results to the construction of QC codes with best parameters. Computer search is used to show that there exist various binary reversible self-orthogonal QC codes that achieve the upper bounds on the minimum distance of linear codes.

  • A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Quasi-Cyclic Codes via Polynomial Matrices Open Access

    Hajime MATSUI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/05/21
      Vol:
    E104-A No:11
      Page(s):
    1649-1653

    A construction method of self-orthogonal and self-dual quasi-cyclic codes is shown which relies on factorization of modulus polynomials for cyclicity in this study. The smaller-size generator polynomial matrices are used instead of the generator matrices as linear codes. An algorithm based on Chinese remainder theorem finds the generator polynomial matrix on the original modulus from the ones constructed on each factor. This method enables us to efficiently construct and search these codes when factoring modulus polynomials into reciprocal polynomials.

  • Tail-Biting Berlekamp-Preparata Convolutional Codes for Phased-Burst-Error-Correcting

    Tianyi ZHANG  Masato KITAKAMI  

     
    PAPER-Information Theory

      Vol:
    E103-A No:3
      Page(s):
    605-612

    This paper presents new encoding and decoding methods for Berlekamp-Preparata convolutional codes (BPCCs) based on tail-biting technique. The proposed scheme can correct a single block of n bit errors relative to a guard space of m error-free blocks while no fractional rate loss is incurred. The proposed tail-biting BPCCs (TBBPCCs) can attain optimal complete burst error correction bound. Therefore, they have the optimal phased-burst-error-correcting capability for convolutional codes. Compared with the previous scheme, the proposed scheme can also improve error correcting capability.

  • A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Integer Codes

    Hajime MATSUI  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:11
      Page(s):
    1952-1956

    Integer codes are defined by error-correcting codes over integers modulo a fixed positive integer. In this paper, we show that the construction of integer codes can be reduced into the cases of prime-power moduli. We can efficiently search integer codes with small prime-power moduli and can construct target integer codes with a large composite-number modulus. Moreover, we also show that this prime-factorization reduction is useful for the construction of self-orthogonal and self-dual integer codes, i.e., these properties in the prime-power moduli are preserved in the composite-number modulus. Numerical examples of integer codes and generator matrices demonstrate these facts and processes.

  • A Relaxed Bit-Write-Reducing and Error-Correcting Code for Non-Volatile Memories

    Tatsuro KOJO  Masashi TAWADA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER

      Vol:
    E101-A No:7
      Page(s):
    1045-1052

    Non-volatile memories are a promising alternative to memory design but data stored in them still may be destructed due to crosstalk and radiation. The data stored in them can be restored by using error-correcting codes but they require extra bits to correct bit errors. One of the largest problems in non-volatile memories is that they consume ten to hundred times more energy than normal memories in bit-writing. It is quite necessary to reduce writing bits. Recently, a REC code (bit-write-reducing and error-correcting code) is proposed for non-volatile memories which can reduce writing bits and has a capability of error correction. The REC code is generated from a linear systematic error-correcting code but it must include the codeword of all 1's, i.e., 11…1. The codeword bit length must be longer in order to satisfy this condition. In this letter, we propose a method to generate a relaxed REC code which is generated from a relaxed error-correcting code, which does not necessarily include the codeword of all 1's and thus its codeword bit length can be shorter. We prove that the maximum flipping bits of the relaxed REC code is still limited theoretically. Experimental results show that the relaxed REC code efficiently reduce the number of writing bits.

  • A Bit-Write-Reducing and Error-Correcting Code Generation Method by Clustering ECC Codewords for Non-Volatile Memories

    Tatsuro KOJO  Masashi TAWADA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E99-A No:12
      Page(s):
    2398-2411

    Non-volatile memories are paid attention to as a promising alternative to memory design. Data stored in them still may be destructed due to crosstalk and radiation. We can restore the data by using error-correcting codes which require extra bits to correct bit errors. Further, non-volatile memories consume ten to hundred times more energy than normal memories in bit-writing. When we configure them using error-correcting codes, it is quite necessary to reduce writing bits. In this paper, we propose a method to generate a bit-write-reducing code with error-correcting ability. We first pick up an error-correcting code which can correct t-bit errors. We cluster its codeswords and generate a cluster graph satisfying the S-bit flip conditions. We assign a data to be written to each cluster. In other words, we generate one-to-many mapping from each data to the codewords in the cluster. We prove that, if the cluster graph is a complete graph, every data in a memory cell can be re-written into another data by flipping at most S bits keeping error-correcting ability to t bits. We further propose an efficient method to cluster error-correcting codewords. Experimental results show that the bit-write-reducing and error-correcting codes generated by our proposed method efficiently reduce energy consumption. This paper proposes the world-first theoretically near-optimal bit-write-reducing code with error-correcting ability based on the efficient coding theories.

  • Decoding of Projective Reed-Muller Codes by Dividing a Projective Space into Affine Spaces

    Norihiro NAKASHIMA  Hajime MATSUI  

     
    PAPER-Coding Theory

      Vol:
    E99-A No:3
      Page(s):
    733-741

    A projective Reed-Muller (PRM) code, obtained by modifying a Reed-Muller code with respect to a projective space, is a doubly extended Reed-Solomon code when the dimension of the related projective space is equal to 1. The minimum distance and the dual code of a PRM code are known, and some decoding examples have been presented for low-dimensional projective spaces. In this study, we construct a decoding algorithm for all PRM codes by dividing a projective space into a union of affine spaces. In addition, we determine the computational complexity and the number of correctable errors of our algorithm. Finally, we compare the codeword error rate of our algorithm with that of the minimum distance decoding.

  • Code Generation Limiting Maximum and Minimum Hamming Distances for Non-Volatile Memories

    Tatsuro KOJO  Masashi TAWADA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E98-A No:12
      Page(s):
    2484-2493

    Data stored in non-volatile memories may be destructed due to crosstalk and radiation but we can restore their data by using error-correcting codes. However, non-volatile memories consume a large amount of energy in writing. How to reduce maximum writing bits even using error-correcting codes is one of the challenges in non-volatile memory design. In this paper, we first propose Doughnut code which is based on state encoding limiting maximum and minimum Hamming distances. After that, we propose a code expansion method, which improves maximum and minimum Hamming distances. When we apply our code expansion method to Doughnut code, we can obtain a code which reduces maximum-flipped bits and has error-correcting ability equal to Hamming code. Experimental results show that the proposed code efficiently reduces the number of maximum-writing bits.

  • ECC-Based Bit-Write Reduction Code Generation for Non-Volatile Memory

    Masashi TAWADA  Shinji KIMURA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E98-A No:12
      Page(s):
    2494-2504

    Non-volatile memory has many advantages such as high density and low leakage power but it consumes larger writing energy than SRAM. It is quite necessary to reduce writing energy in non-volatile memory design. In this paper, we propose write-reduction codes based on error correcting codes and reduce writing energy in non-volatile memory by decreasing the number of writing bits. When a data is written into a memory cell, we do not write it directly but encode it into a codeword. In our write-reduction codes, every data corresponds to an information vector in an error-correcting code and an information vector corresponds not to a single codeword but a set of write-reduction codewords. Given a writing data and current memory bits, we can deterministically select a particular write-reduction codeword corresponding to the data to be written, where the maximum number of flipped bits are theoretically minimized. Then the number of writing bits into memory cells will also be minimized. Experimental results demonstrate that we have achieved writing-bits reduction by an average of 51% and energy reduction by an average of 33% compared to non-encoded memory.

  • A Design Strategy of Error-Prediction Low-Density Parity-Check (EP-LDPC) Error-Correcting Code (ECC) and Error-Recovery Schemes for Scaled NAND Flash Memories

    Shuhei TANAKAMARU  Masafumi DOI  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E98-C No:1
      Page(s):
    53-61

    A design strategy (the required ECC strength and the judgment method of the dominant error mode) of error-prediction low-density parity-check (EP-LDPC) error-correcting code (ECC) and error-recovery schemes for scaled NAND flash memories is discussed in this paper. The reliability characteristics of NAND flash memories are investigated with 1X, 2X and 3Xnm NAND flash memories. Moreover, the system-level reliability of SSDs is analyzed from the acceptable data-retention time of the SSD. The reliability of the NAND flash memory is continuously degrading as the design rule shrinks due to various problems. As a result, future SSDs will not be able to maintain system-level reliability unless advanced ECCs with signal processing are adopted. Therefore, EP-LDPC and error-recovery (ER) schemes are previously proposed to improve the reliability. The reliability characteristics such as the bit-error rate (BER) versus the data-retention time and the effect of the cell-to-cell interference on the BER are measured. These reliability characteristics obtained in this paper are stored in an SSD as a reliability table, which plays a principal role in EP-LDPC scheme. The effectiveness of the EP-LDPC scheme with the scaling of the NAND flash memory is also discussed by analyzing the cell-to-cell interference. An interference factor $alpha$ is proposed to discuss the impact of the cell-to-cell coupling. As a result, the EP-LDPC scheme is assumed to be effective down to 1Xnm NAND flash memory. On the other hand, the ER scheme applies different voltage pulses to memory cells, according to the dominant error mode: program-disturb or data-retention error dominant mode. This paper examines when the error mode changes, corresponding to which pulse should be applied. Additionally, the estimation methods of the dominant error mode by ER scheme are also discussed. Finally, as a result of the system-level reliability analysis, it is concluded that the use of the EP-LDPC scheme can maintain the reliability of the NAND flash memory in 1Xnm technology node.

  • Recursive Construction of (k+1)-Ary Error-Correcting Signature Code for Multiple-Access Adder Channel

    Shan LU  Jun CHENG  Yoichiro WATANABE  

     
    PAPER-Coding Theory

      Vol:
    E96-A No:12
      Page(s):
    2368-2373

    A recursive construction of (k+1)-ary error-correcting signature code is proposed to identify users for MAAC, even in the presence of channel noise. The recursion is originally from a trivial signature code. In the (j-1)-th recursion, from a signature code with minimum distance of 2j-2, a longer and larger signature code with minimum distance of 2j-1 is obtained. The decoding procedure of signature code is given, which consists of error correction and user identification.

  • A Numerical Evaluation of Entanglement Sharing Protocols Using Quantum LDPC CSS Codes

    Masakazu YOSHIDA  Manabu HAGIWARA  Takayuki MIYADERA  Hideki IMAI  

     
    PAPER-Information Theory

      Vol:
    E95-A No:9
      Page(s):
    1561-1569

    Entangled states play crucial roles in quantum information theory and its applied technologies. In various protocols such as quantum teleportation and quantum key distribution, a good entangled state shared by a pair of distant players is indispensable. In this paper, we numerically examine entanglement sharing protocols using quantum LDPC CSS codes. The sum-product decoding method enables us to detect uncorrectable errors, and thus, two protocols, Detection and Resending (DR) protocol and Non-Detection (ND) protocol are considered. In DR protocol, the players abort the protocol and repeat it if they detect the uncorrectable errors, whereas in ND protocol they do not abort the protocol. We show that DR protocol yields smaller error rate than ND protocol. In addition, it is shown that rather high reliability can be achieved by DR protocol with quantum LDPC CSS codes.

  • A Generalization of the Parallel Error Correcting Codes by Allowing Some Random Errors

    Hideki YAGI  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER

      Vol:
    E90-A No:9
      Page(s):
    1745-1753

    This paper generalizes parallel error correcting codes proposed by Ahlswede et al. over a new type of multiple access channel called parallel error channel. The generalized parallel error correcting codes can handle with more errors compared with the original ones. We show construction methods of independent and non-independent parallel error correcting codes and decoding methods. We derive some bounds about the size of respective parallel error correcting codes. The obtained results imply a single parallel error correcting code can be constructed by two or more kinds of error correcting codes with distinct error correcting capabilities.

  • A Note on Construction of Orthogonal Arrays with Unequal Strength from Error-Correcting Codes

    Tomohiko SAITO  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1307-1315

    Orthogonal Arrays (OAs) have been playing important roles in the field of experimental design. It has been known that OAs are closely related to error-correcting codes. Therefore, many OAs can be constructed from error-correcting codes. But these OAs are suitable for only cases that equal interaction effects can be assumed, for example, all two-factor interaction effects. Since these cases are rare in experimental design, we cannot say that OAs from error-correcting codes are practical. In this paper, we define OAs with unequal strength. In terms of our terminology, OAs from error-correcting codes are OAs with equal strength. We show that OAs with unequal strength are closer to practical OAs than OAs with equal strength. And we clarify the relation between OAs with unequal strength and unequal error-correcting codes. Finally, we propose some construction methods of OAs with unequal strength from unequal error-correcting codes.

  • An Adaptive Reed-Solomon Decoder Using Separate Clocks in the Pipelined Steps

    Moon-Kyou SONG  Min-Han KONG  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E88-B No:2
      Page(s):
    615-622

    In this paper, an efficient architecture for an adaptive Reed-Solomon decoder is presented, where the block length n and the message length k can be varied from their minimum allowable values up to their selected values. This eliminates the need of inserting zeros before decoding shortened RS codes. And the error-correcting capability t can be changed adaptively to channel state at every codeword block. The decoder allows efficient decoding in both burst mode and continuous mode, and it permits 3-step pipelined processing based on the modified Euclid's algorithm. Each step in decoding is designed to be clocked by a separate clock. Thus, each step can be efficiently pipelined with no help of multiplexing. Also, it makes it possible to employ no additional buffer even when the decoder input and output clocks are different. The adaptive RS decoder over GF(28) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip. It can be used in a wide range of applications because of its versatility.

  • On Probabilistic Scheme for Encryption Using Nonlinear Codes Mapped from 4 Linear Codes

    Chunming RONG  

     
    LETTER

      Vol:
    E86-A No:9
      Page(s):
    2248-2250

    Probabilistic encryption becomes more and more important since its ability to against chosen-ciphertext attack. Applications like online voting schemes and one-show credentials are based on probabilistic encryption. Research on good probabilistic encryptions are on going, while many good deterministic encryption schemes are already well implemented and available in many systems. To convert any deterministic encryption scheme into a probabilistic encryption scheme, a randomized media is needed to apply on the message and carry the message over as an randomized input. In this paper, nonlinear codes obtained by certain mapping from linear error-correcting codes are considered to serve as such carrying media. Binary nonlinear codes obtained by Gray mapping from 4-linear codes are discussed as example for a such scheme.

1-20hit(40hit)