The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] error(1060hit)

541-560hit(1060hit)

  • Design and Performance Analysis of an ARQ Scheme for Broadband Wireless Access

    Ozgur GURBUZ  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E91-B No:6
      Page(s):
    1989-1998

    This paper presents design and analysis of an Automatic Repeat reQuest (ARQ) scheme for enhancing the throughput and reliability of broadband wireless access systems. The impact of ARQ is emphasized in terms of early error recovery, when Internet data applications and the TCP protocol are considered over a point-to-multipoint fixed wireless system. A selective repeat type ARQ scheme is designed and analyzed through extensive, realistic modeling and simulation of the entire network protocol stack and the wireless channel. The system-wide impact of ARQ design is quantified in terms of end-to-end delay, throughput and SNR gain and in all these metrics, significant performance improvement is observed. Enhanced features, namely, Segmentation and Reassembly (SAR) and Bitmap Compression, are proposed and shown to reduce the overhead costs.

  • Minimum Mean Absolute Error Predictors for Lossless Image Coding

    Yoshihiko HASHIDUME  Yoshitaka MORIKAWA  Shuichi MAKI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:6
      Page(s):
    1783-1792

    In this paper, we investigate minimum mean absolute error (mmae) predictors for lossless image coding. In some prediction-based lossless image coding systems, coding performance depends largely on the efficiency of predictors. In this case, minimum mean square error (mmse) predictors are often used. Generally speaking, these predictors have a problem that outliers departing very far from a regression line are conspicuous enough to obscure inliers. That is, in image compression, large prediction errors near edges cause the degradation of the prediction accuracy of flat areas. On the other hand, mmae predictors are less sensitive to edges and provide more accurate prediction for flat areas than mmse predictors. At the same time, the prediction accuracy of edge areas is brought down. However, the entropy of the prediction errors based on mmae predictors is reduced compared with that of mmse predictors because general images mainly consist of flat areas. In this study, we adopt the Laplacian and the Gaussian function models for prediction errors based on mmae and mmse predictors, respectively, and show that mmae predictors outperform conventional mmse-based predictors including weighted mmse predictors in terms of coding performance.

  • Channel Allocation Algorithms for Coexistence of LR-WPAN with WLAN

    Sangjin HAN  Sungjin LEE  Sanghoon LEE  Yeonsoo KIM  

     
    LETTER-Network

      Vol:
    E91-B No:5
      Page(s):
    1627-1631

    This paper presents a coexistence model of IEEE 802.15.4 with IEEE 802.11b interference in fading channels and proposes two adaptive channel allocation schemes. The first avoids the IEEE 802.15.4 interference only and the second avoids both of the IEEE 802.15.4 and IEEE 802.11b interferences. Numerical results show that the proposed algorithms are effective for avoiding interferences and for maximizing network capacity since they select a channel which gives the maximum signal to noise ratio to the system.

  • Power Control of Turbo Coded System in Lognormal Shadowing Channel

    Sung-Joon PARK  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E91-B No:4
      Page(s):
    1149-1152

    Traditionally, it has been considered that the received signal to noise power ratio should be uniformly preserved to maximize system capacity for uncoded system with reliable feedback channel. However, once channel coding is employed as a building block, another power control scheme presents better performance. In this paper, we consider several power reallocation schemes for an effective use of limited power in a turbo coded system in lognormal shadowing channel. We show that the proposed power reallocation can reduce the decoding error probability by almost two orders of magnitude and provide a power gain of 0.87 dB at a target bit error rate of 10-4 over the equal power allocation among all code symbols. We also propose applying different power levels and cut-off thresholds on systematic and parity bits, and investigate the effect of channel estimation error.

  • Full-Rate STBCs from Coordinate Interleaved Orthogonal Designs in Time-Selective Fading Channels

    Hoojin LEE  Jeffrey G. ANDREWS  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1185-1189

    Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) have attracted a great deal of attention due to their full-diversity and linear maximum likelihood (ML) decodability. In this letter, we propose a simple detection technique, particularly for full-rate STBCs from CIODs to overcome the performance degradation caused by time-selective fading channels. Furthermore, we evaluate the effects of time-selective fading channels and imperfect channel estimation on STBCs from CIODs by using a newly-introduced index, the results of which demonstrate that full-rate STBCs from CIODs are more robust against time-selective fading channels than conventional full-rate STBCs.

  • Impact of Channel Estimation Error on the Sum-Rate in MIMO Broadcast Channels with User Selection

    Yupeng LIU  Ling QIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    955-958

    We investigate the MIMO broadcast channels with imperfect channel knowledge due to estimation error and much more users than transmit antennas to exploit multiuser diversity. The channel estimation error causes the interference among users, resulting in the sum-rate loss. A tight upper bound of this sum-rate loss based on zeroforcing beamforming is derived theoretically. This bound only depends on the channel estimation quality and transmit antenna number, but not on the user number. Based on this upper bound, we show this system maintains full multiuser diversity, and always benefits from the increasing transmit power.

  • AFI Suppressing Effect of an HTS RF Receive Filter with High Selectivity for Base Stations of Digital Wireless Communications

    Kazunori YAMANAKA  Masafumi SHIGAKI  Kazuaki KURIHARA  Akihiko AKASEGAWA  

     
    LETTER

      Vol:
    E91-C No:3
      Page(s):
    364-365

    We report on suppressing adjacent-frequency interference (AFI) by using a RF receive bandpass-filter (BPF) with high-selectivity. By considering a high temperature superconducting (HTS) multi-pole BPF as a high selective BPF, the effect was estimated by numerical simulations. The simulations of the RF signals with an OFDM modulation transmitted to the demodulator via the BPF were carried out using the HTS BPF for 5 GHz band. The results confirmed the improvement of the bit error rate (BER) characteristic with the assumed HTS BPF with the high multi-poles under a strong AFI.

  • Improved Fading Scheme for Spatio-Temporal Error Concealment in Video Transmission

    Min-Cheol HWANG  Jun-Hyung KIM  Chun-Su PARK  Sung-Jea KO  

     
    PAPER-Image Coding and Video Coding

      Vol:
    E91-A No:3
      Page(s):
    740-748

    Error concealment at a decoder is an efficient method to reduce the degradation of visual quality caused by channel errors. In this paper, we propose a novel spatio-temporal error concealment algorithm based on the spatial-temporal fading (STF) scheme which has been recently introduced. Although STF achieves good performance for the error concealment, several drawbacks including blurring still remain in the concealed blocks. To alleviate these drawbacks, in the proposed method, hybrid approaches with adaptive weights are proposed. First, the boundary matching algorithm and the decoder motion vector estimation which are well-known temporal error concealment methods are adaptively combined to compensate for the defect of each other. Then, an edge preserved method is utilized to reduce the blurring effects caused by the bilinear interpolation for spatial error concealment. Finally, two concealed results obtained by the hybrid spatial and temporal error concealment are pixel-wisely blended with adaptive weights. Experimental results exhibit that the proposed method outperforms conventional methods including STF in terms of the PSNR performance as well as subjective visual quality, and the computational complexity of the proposed method is similar to that of STF.

  • Design for Testability Method to Avoid Error Masking of Software-Based Self-Test for Processors

    Masato NAKAZATO  Michiko INOUE  Satoshi OHTAKE  Hideo FUJIWARA  

     
    PAPER-High-Level Testing

      Vol:
    E91-D No:3
      Page(s):
    763-770

    In this paper, we propose a design for testability method for test programs of software-based self-test using test program templates. Software-based self-test using templates has a problem of error masking where some faults detected in a test generation for a module are not detected by the test program synthesized from the test. The proposed method achieves 100% template level fault efficiency, that is, it completely avoids the error masking. Moreover, the proposed method has no performance degradation (adds only observation points) and enables at-speed testing.

  • Linear Precoding of Unitary Space-Time Code for GLRT Decoder

    Yongliang GUO  Shihua ZHU  Zhonghua LIANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:2
      Page(s):
    695-699

    For unitary space-time code (USTC), the impact of spatial correlation on error performance is investigated. A tighter and simpler upper bound is derived for generalized likelihood ratio test decoder. We establish that the spatial correlation does not change the diversity gain, whereas it degrades the error performance of USTC. Motivated by the precoding of space-time block code, we designed a precoder for USTC to handle the case of the joint transmit-receive correlation. Numerical results show that the degradation in performance due to spatial correlation can be considerably compensated by the proposed algorithm.

  • Effect of Reading Errors on Location Prediction in RFID Indoor Networks

    June HWANG  Seong-Lyun KIM  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E91-B No:2
      Page(s):
    567-571

    In this Letter, we investigate the correlation rate of a random sequence data set which is collected by RFID (Radio Frequency IDentification) readers in an indoor location. Using a passive RFID tag introduces reading error, which causes a loss of original data. From the question of how sensing errors of RFID readers affect the location prediction algorithm used for context awareness services at home, we analyze the correlation rate of a collected data set with respect to RFID reader-sensing error rate. Through our analysis, we conclude that the prediction accuracy can be better or worse than the one of the original data streams according to the error rate. We suggest that the reader specification has to be satisfied by the error boundary which is found in this work for the tolerant location prediction.

  • Video Error Concealment Using Fidelity Tracking

    Akio YONEYAMA  Yasuhiro TAKISHIMA  Yasuyuki NAKAJIMA  Yoshinori HATORI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:1
      Page(s):
    70-77

    We propose a method to prevent the degradation of decoded MPEG pictures caused by video transmission over error-prone networks. In this paper, we focus on the error concealment that is processed at the decoder without using any backchannels. Though there have been various approaches to this problem, they generally focus on minimizing the degradation measured frame by frame. Although this frame-level approach is effective in evaluating individual frame quality, in the sense of human perception, the most noticeable feature is the spatio-temporal discontinuity of the image feature in the decoded video image. We propose a novel error concealment algorithm comprising the combination of i) A spatio-temporal error recovery function with low processing cost, ii) A MB-based image fidelity tracking scheme, and iii) An adaptive post-filter using the fidelity information. It is demonstrated by experimental results that the proposed algorithm can significantly reduce the subjective degradation of corrupted MPEG video quality with about 30 % of additional decoding processing power.

  • Asymptotic Performance Analysis of Orthogonal Space-Time Block Codes in Spatially Correlated Rician Fading Channel

    Kyung Seung AHN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:1
      Page(s):
    426-429

    In this letter, we analyze symbol error probability (SEP) and diversity gain of orthogonal space-time block codes (OSTBCs) in spatially correlated Rician fading channel. We derive the moment generating function (MGF) of an effective signal-to-noise ratio (SNR) at the receiver and use it to derive the SEP for M-PSK modulation. We use this result to show that the diversity gain is achieved by the product of the rank of the transmit and receive correlation matrix, and the loss in array gain is quantified as a function of the spatial correlation and the line of sight (LOS) component.

  • Performance Analysis of Error Probabilities for Arbitrary 2-D Signaling with I/Q Unbalances over Nakagami-m Fading Channels

    Jaeyoon LEE  Dongweon YOON  Sang Kyu PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    364-367

    Recently, we provided closed-form expressions involving two-dimensional (2-D) joint Gaussian Q-function for the symbol error rate (SER) and bit error rate (BER) of an arbitrary 2-D signal with I/Q unbalances over an additive white Gaussian noise (AWGN) channel [1]. In this letter, we extend the expressions to Nakagami-m fading channels. Using Craig representation of the 2-D joint Gaussian Q-function, we derive an exact and general expression for the error probabilities of arbitrary 2-D signaling with I/Q phase and amplitude unbalances over Nakagami-m fading channels.

  • Multi-Level Confined Error Diffusion Algorithm for Flat Panel Display

    JunHak LEE  Takahiko HORIUCHI  Shoji TOMINAGA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:1
      Page(s):
    62-69

    The reduction of a structural pattern at specific gray levels or at the special condition of image data has mainly been discussed in digital halftone methods. This problem is more severe in some flat panel displays because their black levels typically are brighter than other displays blocks. The authors proposed an advanced confined error diffusion (ACED) algorithm which was a well-organized halftone algorithm for flat panel devices. In this paper, we extend the ACED algorithm to the multi-level systems, which are capable of displaying more than 2 levels. Our extension has two merits for the hardware implementation. First, it can be processed in real time using the look-up table based method. The second one is the flexibility of selecting the used gray level. This paper discusses the performance of the proposed algorithms with experimental results for natural test images.

  • A Method for Reinforcing Noun Countability Prediction

    Ryo NAGATA  Atsuo KAWAI  Koichiro MORIHIRO  Naoki ISU  

     
    PAPER-Natural Language Processing

      Vol:
    E90-D No:12
      Page(s):
    2077-2086

    This paper proposes a method for reinforcing noun countability prediction, which plays a crucial role in demarcating correct determiners in machine translation and error detection. The proposed method reinforces countability prediction by introducing a novel heuristics called one countability per discourse. It claims that when a noun appears more than once in a discourse, all instances will share identical countability. The basic idea of the proposed method is that mispredictions can be corrected by efficiently using one countability per discourse heuristics. Experiments show that the proposed method successfully reinforces countability prediction and outperforms other methods used for comparison. In addition to its performance, it has two advantages over earlier methods: (i) it is applicable to any countability prediction method, and (ii) it requires no human intervention to reinforce countability prediction.

  • A Note on the ε-Overflow Probability of Lossless Codes

    Ryo NOMURA  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    LETTER-Information Theory

      Vol:
    E90-A No:12
      Page(s):
    2965-2970

    In this letter, we generalize the achievability of variable-length coding from two viewpoints. One is the definition of an overflow probability, and the other is the definition of an achievability. We define the overflow probability as the probability of codeword length, not per symbol, is larger than ηn and we introduce the ε-achievability of variable-length codes that implies an existence of a code for the source under the condition that the overflow probability is smaller than or equal to ε. Then we show that the ε-achievability of variable-length codes is essentially equivalent to the ε-achievability of fixed-length codes for general sources. Moreover by using above results, we show the condition of ε-achievability for some restricted sources given ε.

  • DFP: Data Forwarding Protocol to Provide End-to-End Reliable Delivery Service in Large-Scale Wireless Sensor Networks

    Joo-Sang YOUN  Chul-Hee KANG  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3383-3391

    Reliable end-to-end delivery service is one of the most important issues for wireless sensor networks in large-scale deployments. In this paper, a reliable data transport protocol, called the Data Forwarding Protocol (DFP), is proposed to improve the end-to-end delivery rate with minimum transport overhead for recovering from data loss in large-scale wireless sensor environments consisting of low speed mobile sensor nodes. The key idea behind this protocol is the establishment of multi-split connection on an end-to-end route, through the Agent Host (AH), which plays the role of a virtual source or a sink node. In addition, DFP applies the local error control and the local flow control mechanisms to multi-split connections, according to network state. Extensive simulations are carried out via ns-2 simulator. The simulation results demonstrate that DFP not only provide up to 30% more reliable data delivery, but also reduces the number of retransmission generated by data loss, compared with the TCP-like end-to-end approach.

  • Mobile Positioning and Tracking Based on TOA/TSOA/TDOA/AOA with NLOS-Reduced Distance Measurements

    Wei-Kai CHAO  Kuen-Tsair LAY  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E90-B No:12
      Page(s):
    3643-3653

    In this paper, we address the issue of mobile positioning and tracking after measurements have been made on the distances and possibly directions between an MS (mobile station) and its nearby base stations (BS's). The measurements can come from the time of arrival (TOA), the time sum of arrival (TSOA), the time difference of arrival (TDOA), and the angle of arrival (AOA). They are in general corrupted with measurement noise and NLOS (non-line-of-sight) error. The NLOS error is the dominant factor that degrades the accuracy of mobile positioning. Assuming specific statistic models for the NLOS error, however, we propose a scheme that significantly reduces its effect. Regardless of which of the first three measurement types (i.e. TOA, TSOA, or TDOA) is used, the proposed scheme computes the MS location in a mathematically unified way. We also propose a method to identify the TOA measurements that are not or only slightly corrupted with NLOS errors. We call them nearly NLOS-error-free TOA measurements. From the signals associated with TOA measurements, AOA information can be obtained and used to aid the MS positioning. Finally, by combining the proposed MS positioning method with Kalman filtering, we propose a scheme to track the movement of the MS.

  • A Study of Timing Control and Array Weight Error Effects in the Antenna Array Aided Uplink Synchronous DS-CDMA System

    Yong-Seok KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:12
      Page(s):
    3729-3732

    We investigate the effects of timing misalignment and imperfect array weight vector generation on the antenna array (AA)-aided uplink synchronous DS-CDMA system. Previous works have assumed perfect uplink synchronization among first path's receiving timing and perfect array weight vector calculation. Unfortunately, practical system will experience of timing control error (TCE) and array weight error (AWE). Accordingly, this letter undertakes an analysis of the impacts of TCE and AWE, evaluating a closed form BER performance considering the important factors such as the number of antennas, the variance of AWE and the misalignment factor as a measure of the TCE in dispersive Rayleigh multipath fading channel. Additionally, the scenario of synchronous uplink with the cell-site AA is compared with asynchronous scheme. Numerical results show that the performance in the synchronous uplink can be further improved, even at high levels of AWE and TCE.

541-560hit(1060hit)