Gyulim KIM Hoojin LEE Xinrong LI Seong Ho CHAE
This letter studies the secrecy outage probability (SOP) and the secrecy diversity order of Alamouti STBC with decision feedback (DF) detection over the time-selective fading channels. For given temporal correlations, we have derived the exact SOPs and their asymptotic approximations for all possible combinations of detection schemes including joint maximum likehood (JML), zero-forcing (ZF), and DF at Bob and Eve. We reveal that the SOP is mainly influenced by the detection scheme of the legitimate receiver rather than eavesdropper and the achievable secrecy diversity order converges to two and one for JML only at Bob (i.e., JML-JML/ZF/DF) and for the other cases (i.e., ZF-JML/ZF/DF, DF-JML/ZF/DF), respectively. Here, p-q combination pair indicates that Bob and Eve adopt the detection method p ∈ {JML, ZF, DF} and q ∈ {JML, ZF, DF}, respectively.
He HE Shun KOJIMA Kazuki MARUTA Chang-Jun AHN
In mobile communication systems, the channel state information (CSI) is severely affected by the noise effect of the receiver. The adaptive subcarrier grouping (ASG) for sample matrix inversion (SMI) based minimum mean square error (MMSE) adaptive array has been previously proposed. Although it can reduce the additive noise effect by increasing samples to derive the array weight for co-channel interference suppression, it needs to know the signal-to-noise ratio (SNR) in advance to set the threshold for subcarrier grouping. This paper newly proposes adaptive zero padding (AZP) in the time domain to improve the weight accuracy of the SMI matrix. This method does not need to estimate the SNR in advance, and even if the threshold is always constant, it can adaptively identify the position of zero-padding to eliminate the noise interference of the received signal. Simulation results reveal that the proposed method can achieve superior bit error rate (BER) performance under various Rician K factors.
Tatsumi KONISHI Hiroyuki NAKANO Yoshikazu YANO Michihiro AOKI
This letter proposes a transmission scheme called spatial vector (SV), which is effective for Nakagami-m fading multiple-input multiple-output channels. First, the analytical error rate of SV is derived for Nakagami-m fading MIMO channels. Next, an example of SV called integer SV (ISV) is introduced. The error performance was evaluated over Nakagami-m fading from m = 1 to m = 50 and compared with spatial modulation (SM), enhanced SM, and quadrature SM. The results show that for m > 1, ISV outperforms the SM schemes and is robust to m variations.
Yoji UESUGI Keita KATAGIRI Koya SATO Kei INAGE Takeo FUJII
This paper proposes a measurement-based spectrum database (MSD) with clustered fading distributions toward greater storage efficiencies. The conventional MSD can accurately model the actual characteristics of multipath fading by plotting the histogram of instantaneous measurement data for each space-separated mesh and utilizing it in communication designs. However, if the database contains all of a distribution for each location, the amount of data stored will be extremely large. Because the main purpose of the MSD is to improve spectral efficiency, it is necessary to reduce the amount of data stored while maintaining quality. The proposed method reduces the amount of stored data by estimating the distribution of the instantaneous received signal power at each point and integrating similar distributions through clustering. Numerical results show that clustering techniques can reduce the amount of data while maintaining the accuracy of the MSD. We then apply the proposed method to the outage probability prediction for the instantaneous received signal power. It is revealed that the prediction accuracy is maintained even when the amount of data is reduced.
Supraja EDURU Nakkeeran RANGASWAMY
In this paper, the uplink performance of Multi-User Multiple Input Multiple Output (MU-MIMO) Zero Forcing (ZF) receiver is investigated over correlated Rayleigh fading channels with channel estimation error. A mathematical expression for the sub-streams' output Signal to Noise Ratio (SNR) with transmit and receive-correlation is derived in the presence of erroneous channel estimates. Besides, an approximate and accurate expression for the Bit Error Rate (BER) of ZF receiver for 16-Quadrature Amplitude Modulation (QAM) with transmit-correlation is deduced in terms of the hypergeometric function. Subsequently, the developed analytical BER is verified by Monte-Carlo trails accounting various system parameters. The simulation results indicate that ZF receiver's BER relies solely on the transmit-correlation for the same number of transmit and receive-antennas at higher average SNR values per transmitted symbol (Es/N0). Also, a logarithmic and exponential growth in the BER is observed with an increase in the Mean Square estimation Error (MSE) and correlation coefficient, respectively.
Seongah JEONG Jinkyu KANG Hoojin LEE
In this letter, we investigate tight analytical and asymptotic upper bounds for bit error rate (BER) of constitutional codes over exponentially correlated Nakagami-m fading channels. Specifically, we derive the BER expression depending on an exact closed-form formula for pairwise error event probabilities (PEEP). Moreover, the corresponding asymptotic analysis in high signal-to-noise ratio (SNR) regime is also explored, which is verified via numerical results. This allows us to have explicit insights on the achievable coding gain and diversity order.
Jinu GONG Hoojin LEE Rumin YANG Joonhyuk KANG
Two-ray (TR) fading model is one of the fading models to represent a worst-case fading scenario. We derive the exact closed-form expressions of the generalized moment generating function (G-MGF) for the TR fading model, which enables us to analyze the numerous types of wireless communication applications. Among them, we carry out several analytical results for the TR fading model, including the exact ergodic capacity along with asymptotic expressions and energy detection performance. Finally, we provide numerical results to validate our evaluations.
Cong WANG Tiecheng SONG Jun WU Wei JIANG Jing HU
Green cognitive radio (CR) plays an important role in offering secondary users (SUs) with more spectrum with smaller energy expenditure. However, the energy efficiency (EE) issues associated with green CR for fading channels have not been fully studied. In this paper, we investigate the average EE maximization problem for spectrum-sharing CR in fading channels. Unlike previous studies that considered either the peak or the average transmission power constraints, herein, we considered both of these constraints. Our aim is to maximize the average EE of SU by optimizing the transmission power under the joint peak and average transmit power constraints, the rate constraint of SU and the quality of service (QoS) constraint of primary user (PU). Specifically, the QoS for PU is guaranteed based on either the average interference power constraint or the PU outage constraint. To address the non-convex optimization problem, an iterative optimal power allocation algorithm that can tackle the problem efficiently is proposed. The optimal transmission powers are identified under both of perfect and imperfect channel side information (CSI). Simulations show that our proposed scheme can achieve higher EE over the existing scheme and the EE achieved under perfect CSI is better than that under imperfect CSI.
Yuji MIZUTANI Hiroto KURIKI Yosuke KODAMA Keiichi MIZUTANI Takeshi MATSUMURA Hiroshi HARADA
The conventional universal filtered-DFT-spread-OFDM (UF-DFTs-OFDM) can drastically improve the out-of-band emission (OOBE) caused by the discontinuity between symbols in the conventional cyclic prefix-based DFTs-OFDM (CP-DFTs-OFDM). However, the UF-DFTs-OFDM degrades the communication quality in a long-delay multipath fading environment due to the frequency-domain ripple derived from the long transition time of the low pass filter (LPF) corresponding to the guard interval (GI). In this paper, we propose an enhanced UF-DFTs-OFDM (eUF-DFTs-OFDM) that achieves significantly low OOBE and high communication quality even in a long-delay multipath fading environment. The eUF-DFTs-OFDM applies an LPF with quite short length in combination with the zero padding (ZP) or the CP process. Then, the characteristics of the OOBE, peak-to-average power ratio (PAPR), and block error rate (BLER) are evaluated by computer simulation with the LTE uplink parameters. The result confirms that the eUF-DFTs-OFDM can improve the OOBE by 22.5dB at the channel-edge compared to the CP-DFTs-OFDM, and also improve the ES/N0 to achieve BLER =10-3 by about 2.5dB for QPSK and 16QAM compared to the UF-DFTs-OFDM. For 64QAM, the proposed eUF-DFTs-ODFDM can eliminate the error floor of the UF-DFTs-OFDM. These results indicate that the proposed eUF-DFTs-OFDM can significantly reduce the OOBE while maintaining the same level of communication quality as the CP-DFTs-OFDM even in long-delay multipath environment.
In this study, product of two independent and non-identically distributed (i.n.i.d.) random variables (RVs) for κ-µ fading distribution and α-µ fading distribution is considered. The statistics of the product of RVs has been broadly applied in a large number of communications fields, such as cascaded fading channels, multiple input multiple output (MIMO) systems, radar communications and cognitive radios (CR). Exact close-form expressions of probability density function (PDF) and cumulative distribution function (CDF) with exact series formulas for the product of two i.n.i.d. fading distributions κ-µ and α-µ are deduced more accurately to represent the provided product expressions and generalized composite multipath shadowing models. Furthermore, ergodic channel capacity (ECC) is obtained to measure maximum fading channel capacity. At last, interestingly unlike κ-µ, η-µ, α-µ in [9], [17], [18], these analytical results are validated with Monte Carlo simulations and it shows that for provided κ-µ/α-µ model, non-linear parameter has more important influence than multipath component in PDF and CDF, and when the ratio between the total power of the dominant components and the total power of the scattered waves is same, higher α can significantly improve channel capacity over composite fading channels.
Zhiqiang YI Meilin HE Peng PAN Haiquan WANG
This paper analyzes the performance of various decoders in a two-user interference channel, and some improved decoders based on enhanced utilization of channel state information at the receiver side are presented. Further, new decoders, namely hierarchical constellation based decoders, are proposed. Simulations show that the improved decoders and the proposed decoders have much better performance than existing decoders. Moreover, the proposed decoders have lower decoding complexity than the traditional maximum likelihood decoder.
Dong-Sun JANG Ui-Seok JEONG Gi-Hoon RYU Kyunbyoung KO
In this paper, we show exact bit error rates (BERs) for orthogonal space-time block code (OSTBC) decoded-and-forward (DF) relaying networks over independent and non-identically distributed (INID) Rayleigh fading channels. We consider both non-adaptive DF (non-ADF) and adaptive DF (ADF) schemes for OSTBC relay networks with arbitrary multiple-input multiple-output (MIMO) relay antenna configurations. For each scheme, we derive the probability density functions (PDFs) of indirect link and combined links, respectively. Based on the derived PDFs, we express exact BERs and then, their accuracy is verified by the comparison with simulation results. It is confirmed that the transmit diversity gain of the relay node can be obtained when the relay is close to the source and then, the receive diversity gain of the relay node as well as ADF gain over non-ADF can be obtained when the relay is close to the destination.
Guangna ZHANG Yuanyuan GAO Huadong LUO Nan SHA Shijie WANG Kui XU
In this paper, we investigate a cooperative communication system comprised of a source, a destination, and multiple decode-and-forward (DF) relays in the presence of a potential malicious eavesdropper is within or without the coverage area of the source. Based on the more general Nakagami-m fading channels, we analyze the security performance of the single-relay selection and multi-relay selection schemes for protecting the source against eavesdropping. In the single-relay selection scheme, only the best relay is chosen to assist in the source transmission. Differing from the single-relay selection, multi-relay selection scheme allows multiple relays to forward the source to the destination. We also consider the classic direct transmission as a benchmark scheme to compare with the two relay selection schemes. We derive the exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the direct transmission, the single-relay selection as well as the multi-relay selection scheme over Nakagami-m fading channel when the eavesdropper is within and without the coverage area of the source. Moreover, the security-reliability tradeoff (SRT) of these three schemes are also analyzed. It is verified that the SRT of the multi-relay selection consistently outperforms the single-relay selection, which of both the single-relay and multi-relay selection schemes outperform the direct transmission when the number of relays is large, no matter the eavesdropper is within or without the coverage of the source. In addition, as the number of DF relays increases, the SRT of relay selection schemes improve notably. However, the SRT of both two relay selection approaches become worse when the eavesdropper is within the coverage area of the source.
Kyu-Sung HWANG Chang Kyung SUNG
In this paper, we analyze the impact of channel estimation errors in an amplify-and-forward (AF)-based two-way relaying network (TWRN) where adaptive modulation (AM) is employed in individual relaying path. In particular, the performance degradation caused by channel estimation error is investigated over Nakagami-m fading channels. We first derive an end-to-end signal-to-noise ratio (SNR), a cumulative distribution function, and a probability density function in the presence of channel estimation error for the AF-based TWRN with adaptive modulation (TWRN-AM). By utilizing the derived SNR statistics, we present accurate expressions of the average spectral efficiency and bit error rates with an outage-constraint in which transmission does not take place during outage events of bidirectional communications. Based on our derived analytical results, an optimal power allocation scheme for TWRN-AM is proposed to improve the average spectral efficiency by minimizing system outages.
Blind nonlinear compensation for RF receivers is an important research topic in 5G mobile communication, in which higher level modulation schemes are employed more often to achieve high capacity and ultra-broadband services. Since nonlinear compensation circuits must handle intermodulation bandwidths that are more than three times the signal bandwidth, reducing the sampling frequency is essential for saving power consumption. This paper proposes a novel blind nonlinear compensation technique that employs sub-Nyquist sampling analog-to-digital conversion. Although outband distortion spectrum is folded in the proposed sub-Nyquist sampling technique, determination of compensator coefficients is still possible by using the distortion power. Proposed technique achieves almost same compensation performance in EVM as the conventional compensation scheme, while reducing sampling speed of analog to digital convertor (ADC) to less than half the normal sampling frequency. The proposed technique can be applied in concurrent dual-band communication systems and adapt to flat Rayleigh fading environments.
Chun-Lin LIN Tzu-Hsiang LIN Ruey-Yi WEI
Bit-interleaved coded modulation with iterative decoding (BICM-ID) is suitable for correlated Rayleigh fading channels. Additionally, BICM-ID using differential encoding can avoid the pilot overhead. In this paper, we consider BICM-ID using 16-DAPSK (differential amplitude and phase-shift keying). We first derive the probability of receiving signals conditioned on the transmission of input bits for general differential encoding; then we propose two new 16-DAPSK bit labeling methods. In addition, convolutional codes for the new bit labeling are developed. Both the minimum distance and the simulation results show that the proposed labeling has better error performance than that of the original differential encoding, and the searched new codes can further improve the error performance.
Phuc V. TRINH Thanh V. PHAM Anh T. PHAM
Both spatial diversity and multihop relaying are considered to be effective methods for mitigating the impact of atmospheric turbulence-induced fading on the performance of free-space optical (FSO) systems. Multihop relaying can significantly reduce the impact of fading by relaying the information over a number of shorter hops. However, it is not feasible or economical to deploy relays in many practical scenarios. Spatial diversity could substantially reduce the fading variance by introducing additional degrees of freedom in the spatial domain. Nevertheless, its superiority is diminished when the fading sub-channels are correlated. In this paper, our aim is to study the fundamental performance limits of spatial diversity suffering from correlated Gamma-Gamma (G-G) fading channels in multihop coherent FSO systems. For the performance analysis, we propose to approximate the sum of correlated G-G random variables (RVs) as a G-G RV, which is then verified by the Kolmogorov-Smirnov (KS) goodness-of-fit statistical test. Performance metrics, including the outage probability and the ergodic capacity, are newly derived in closed-form expressions and thoroughly investigated. Monte-Carlo (M-C) simulations are also performed to validate the analytical results.
Donggu KIM Hoojin LEE Joonhyuk KANG
This paper derives highly accurate and effective closed-form formulas for the average upper bound on the pairwise error probability (PEP) of the multi-carrier index keying orthogonal frequency division multiplexing (MCIK-OFDM) system with low-complexity detection (i.e., greedy detection) in two-wave with diffuse power (TWDP) fading channels. To be specific, we utilize an exact moment generating function (MGF) of the signal-to-noise ratio (SNR) under TWDP fading to guarantee highly precise investigations of error probability performance; existing formulas for average PEP employ the approximate probability density function (PDF) of the SNR for TWDP fading, thereby inducing inherent approximation error. Moreover, some special cases of TWDP fading are also considered. To quantitatively reveal the achievable modulation gain and diversity order, we further derive asymptotic formulas for the upper bound on the average PEP. The obtained asymptotic expressions can be used to rapidly estimate the achievable error performance of MCIK-OFDM with the greedy detection over TWDP fading in high SNR regimes.
Jinu GONG Hoojin LEE Joonhyuk KANG
In this letter, we present a new expression of ergodic capacity for two-wave with diffuse power (TWDP) fading channels. The derived formula is relatively concise and consists of well-known functions even in infinite series form. Especially, the truncated approximate expression and asymptotic formula are also presented, which enable us to obtain useful and physical insights on the effect of TWDP fading on the ergodic capacity for various fading conditions.
Channel capacity is a useful numerical index not only for grasping the upper limit of the transmission bit rate but also for comparing the abilities of various digital transmission schemes commonly used in radio-wave propagation environments because the channel capacity does not depend on specific communication methods such as modulation/demodulation schemes or error correction schemes. In this paper, modeling of the noncoherent capacity in a highly underspread WSSUS channel is investigated using a new approach. Unlike the conventional method, namely, the information theoretic method, a very straightforward formula can be obtained in a statistical manner. Although the modeling in the present study is carried out using a somewhat less rigorous approach, the result obtained is useful for roughly understanding the channel capacity in doubly selective fading environments. We clarify that the radio wave propagation parameter of the spread factor, which is the product of the Doppler spread and the delay spread, can be related quantitatively to the effective maximum signal-to-interference ratio by a simple formula. Using this model, the physical limit of wireless digital transmission is discussed from a radio wave propagation perspective.