The search functionality is under construction.

Keyword Search Result

[Keyword] graph(1406hit)

261-280hit(1406hit)

  • Design of Two Channel Biorthogonal Graph Wavelet Filter Banks with Half-Band Kernels

    Xi ZHANG  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1743-1750

    In this paper, we propose a novel design method of two channel critically sampled compactly supported biorthogonal graph wavelet filter banks with half-band kernels. First of all, we use the polynomial half-band kernels to construct a class of biorthogonal graph wavelet filter banks, which exactly satisfy the PR (perfect reconstruction) condition. We then present a design method of the polynomial half-band kernels with the specified degree of flatness. The proposed design method utilizes the PBP (Parametric Bernstein Polynomial), which ensures that the half-band kernels have the specified zeros at λ=2. Therefore the constraints of flatness are satisfied at both of λ=0 and λ=2, and then the resulting graph wavelet filters have the flat spectral responses in passband and stopband. Furthermore, we apply the Remez exchange algorithm to minimize the spectral error of lowpass (highpass) filter in the band of interest by using the remaining degree of freedom. Finally, several examples are designed to demonstrate the effectiveness of the proposed design method.

  • A Polynomial Time Pattern Matching Algorithm on Graph Patterns of Bounded Treewidth

    Takayoshi SHOUDAI  Takashi YAMADA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1764-1772

    This paper deals with a problem to decide whether a given graph structure appears as a pattern in the structure of a given graph. A graph pattern is a triple p=(V,E,H), where (V,E) is a graph and H is a set of variables, which are ordered lists of vertices in V. A variable can be replaced with an arbitrary connected graph by a kind of hyperedge replacements. A substitution is a collection of such replacements. The graph pattern matching problem (GPMP) is the computational problem to decide whether or not a given graph G is obtained from a given graph pattern p by a substitution. In this paper, we show that GPMP for a graph pattern p and a graph G is solvable in polynomial time if the length of every variable in p is 2, p is of bounded treewidth, and G is connected.

  • Rapid Generation of the State Codebook in Side Match Vector Quantization

    Hanhoon PARK  Jong-Il PARK  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/05/16
      Vol:
    E100-D No:8
      Page(s):
    1934-1937

    Side match vector quantization (SMVQ) has been originally developed for image compression and is also useful for steganography. SMVQ requires to create its own state codebook for each block in both encoding and decoding phases. Since the conventional method for the state codebook generation is extremely time-consuming, this letter proposes a fast generation method. The proposed method is tens times faster than the conventional one without loss of perceptual visual quality.

  • Biomimetics Image Retrieval Platform Open Access

    Miki HASEYAMA  Takahiro OGAWA  Sho TAKAHASHI  Shuhei NOMURA  Masatsugu SHIMOMURA  

     
    INVITED PAPER

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1563-1573

    Biomimetics is a new research field that creates innovation through the collaboration of different existing research fields. However, the collaboration, i.e., the exchange of deep knowledge between different research fields, is difficult for several reasons such as differences in technical terms used in different fields. In order to overcome this problem, we have developed a new retrieval platform, “Biomimetics image retrieval platform,” using a visualization-based image retrieval technique. A biological database contains a large volume of image data, and by taking advantage of these image data, we are able to overcome limitations of text-only information retrieval. By realizing such a retrieval platform that does not depend on technical terms, individual biological databases of various species can be integrated. This will allow not only the use of data for the study of various species by researchers in different biological fields but also access for a wide range of researchers in fields ranging from materials science, mechanical engineering and manufacturing. Therefore, our platform provides a new path bridging different fields and will contribute to the development of biomimetics since it can overcome the limitation of the traditional retrieval platform.

  • Fine-Grained Analysis of Compromised Websites with Redirection Graphs and JavaScript Traces

    Yuta TAKATA  Mitsuaki AKIYAMA  Takeshi YAGI  Takeshi YADA  Shigeki GOTO  

     
    PAPER-Internet Security

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1714-1728

    An incident response organization such as a CSIRT contributes to preventing the spread of malware infection by analyzing compromised websites and sending abuse reports with detected URLs to webmasters. However, these abuse reports with only URLs are not sufficient to clean up the websites. In addition, it is difficult to analyze malicious websites across different client environments because these websites change behavior depending on a client environment. To expedite compromised website clean-up, it is important to provide fine-grained information such as malicious URL relations, the precise position of compromised web content, and the target range of client environments. In this paper, we propose a new method of constructing a redirection graph with context, such as which web content redirects to malicious websites. The proposed method analyzes a website in a multi-client environment to identify which client environment is exposed to threats. We evaluated our system using crawling datasets of approximately 2,000 compromised websites. The result shows that our system successfully identified malicious URL relations and compromised web content, and the number of URLs and the amount of web content to be analyzed were sufficient for incident responders by 15.0% and 0.8%, respectively. Furthermore, it can also identify the target range of client environments in 30.4% of websites and a vulnerability that has been used in malicious websites by leveraging target information. This fine-grained analysis by our system would contribute to improving the daily work of incident responders.

  • Power of Enumeration — Recent Topics on BDD/ZDD-Based Techniques for Discrete Structure Manipulation Open Access

    Shin-ichi MINATO  

     
    INVITED PAPER

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1556-1562

    Discrete structure manipulation is a fundamental technique for many problems solved by computers. BDDs/ZDDs have attracted a great deal of attention for twenty years, because those data structures are useful to efficiently manipulate basic discrete structures such as logic functions and sets of combinations. Recently, one of the most interesting research topics related to BDDs/ZDDs is Frontier-based search method, a very efficient algorithm for enumerating and indexing the subsets of a graph to satisfy a given constraint. This work is important because many kinds of practical problems can be efficiently solved by some variations of this algorithm. In this article, we present recent research activity related to BDD and ZDD. We first briefly explain the basic techniques for BDD/ZDD manipulation, and then we present several examples of the state-of-the-art algorithms to show the power of enumeration.

  • Serial and Parallel LLR Updates Using Damped LLR for LDPC Coded Massive MIMO Detection with Belief Propagation

    Shuhei TANNO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1277-1284

    Detecting signals in a very large multiple-input multiple-output (MIMO) system requires high complexy of implementation. Thus, belief propagation based detection has been studied recently because of its low complexity. When the transmitted signal sequence is encoded using a channel code decodable by a factor-graph-based algorithm, MIMO signal detection and channel decoding can be combined in a single factor graph. In this paper, a low density parity check (LDPC) coded MIMO system is considered, and two types of factor graphs: bipartite and tripartite graphs are compared. The former updates the log-likelihood-ratio (LLR) values at MIMO detection and parity checking simultaneously. On the other hand, the latter performs the updates alternatively. Simulation results show that the tripartite graph achieves faster convergence and slightly better bit error rate performance. In addition, it is confirmed that the LLR damping in LDPC decoding is important for a stable convergence.

  • Zero-Shot Embedding for Unseen Entities in Knowledge Graph

    Yu ZHAO  Sheng GAO  Patrick GALLINARI  Jun GUO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/04/10
      Vol:
    E100-D No:7
      Page(s):
    1440-1447

    Knowledge graph (KG) embedding aims at learning the latent semantic representations for entities and relations. However, most existing approaches can only be applied to KG completion, so cannot identify relations including unseen entities (or Out-of-KG entities). In this paper, motivated by the zero-shot learning, we propose a novel model, namely JointE, jointly learning KG and entity descriptions embedding, to extend KG by adding new relations with Out-of-KG entities. The JointE model is evaluated on entity prediction for zero-shot embedding. Empirical comparisons on benchmark datasets show that the proposed JointE model outperforms state-of-the-art approaches. The source code of JointE is available at https://github.com/yzur/JointE.

  • Hierarchical Formal Verification Combining Algebraic Transformation with PPRM Expansion and Its Application to Masked Cryptographic Processors

    Rei UENO  Naofumi HOMMA  Takafumi AOKI  Sumio MORIOKA  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1396-1408

    This paper presents an automatic hierarchical formal verification method for arithmetic circuits over Galois fields (GFs) which are dedicated digital circuits for GF arithmetic operations used in cryptographic processors. The proposed verification method is based on a combination of a word-level computer algebra procedure with a bit-level PPRM (Positive Polarity Reed-Muller) expansion procedure. While the application of the proposed verification method is not limited to cryptographic processors, these processors are our important targets because complicated implementation techniques, such as field conversions, are frequently used for side-channel resistant, compact and low power design. In the proposed method, the correctness of entire datapath is verified over GF(2m) level, or word-level. A datapath implementation is represented hierarchically as a set of components' functional descriptions over GF(2m) and their wiring connections. We verify that the implementation satisfies a given total-functional specification over GF(2m), by using an automatic algebraic method based on the Gröbner basis and a polynomial reduction. Then, in order to verify whether each component circuit is correctly implemented by combination of GF(2) operations, i.e. logic gates in bit-level, we use our fast PPRM expansion procedure which is customized for handling large-scale Boolean expressions with many variables. We have applied the proposed method to a complicated AES (Advanced Encryption Standard) circuit with a masking countermeasure against side-channel attack. The results show that the proposed method can verify such practical circuit automatically within 4 minutes, while any single conventional verification methods fail within a day or even more.

  • Reconfiguration of Steiner Trees in an Unweighted Graph

    Haruka MIZUTA  Takehiro ITO  Xiao ZHOU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E100-A No:7
      Page(s):
    1532-1540

    We study a reconfiguration problem for Steiner trees in an unweighted graph, which determines whether there exists a sequence of Steiner trees that transforms a given Steiner tree into another one by exchanging a single edge at a time. In this paper, we show that the problem is PSPACE-complete even for split graphs, while solvable in linear time for interval graphs and for cographs.

  • Low-Rank Representation with Graph Constraints for Robust Visual Tracking

    Jieyan LIU  Ao MA  Jingjing LI  Ke LU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/03/08
      Vol:
    E100-D No:6
      Page(s):
    1325-1338

    Subspace representation model is an important subset of visual tracking algorithms. Compared with models performed on the original data space, subspace representation model can effectively reduce the computational complexity, and filter out high dimensional noises. However, for some complicated situations, e.g., dramatic illumination changing, large area of occlusion and abrupt object drifting, traditional subspace representation models may fail to handle the visual tracking task. In this paper, we propose a novel subspace representation algorithm for robust visual tracking by using low-rank representation with graph constraints (LRGC). Low-rank representation has been well-known for its superiority of handling corrupted samples, and graph constraint is flexible to characterize sample relationship. In this paper, we aim to exploit benefits from both low-rank representation and graph constraint, and deploy it to handle challenging visual tracking problems. Specifically, we first propose a novel graph structure to characterize the relationship of target object in different observation states. Then we learn a subspace by jointly optimizing low-rank representation and graph embedding in a unified framework. Finally, the learned subspace is embedded into a Bayesian inference framework by using the dynamical model and the observation model. Experiments on several video benchmarks demonstrate that our algorithm performs better than traditional ones, especially in dynamically changing and drifting situations.

  • Inferring Phylogenetic Network of Malware Families Based on Splits Graph

    Jing LIU  Yuan WANG  Pei Dai XIE  Yong Jun WANG  

     
    LETTER-Information Network

      Pubricized:
    2017/03/22
      Vol:
    E100-D No:6
      Page(s):
    1368-1371

    Malware phylogeny refers to inferring the evolutionary relationships among instances of a family. It plays an important role in malware forensics. Previous works mainly focused on tree-based model. However, trees cannot represent reticulate events, such as inheriting code fragments from different parents, which are common in variants generation. Therefore, phylogenetic networks as a more accurate and general model have been put forward. In this paper, we propose a novel malware phylogenetic network construction method based on splits graph, taking advantage of the one-to-one correspondence between reticulate events and netted components in splits graph. We evaluate our algorithm on three malware families and two benign families whose ground truth are known and compare with competing algorithms. Experiments demonstrate that our method achieves a higher mean accuracy of 64.8%.

  • Synthesizing Pareto Efficient Intelligible State Machines from Communication Diagram

    Toshiyuki MIYAMOTO  

     
    PAPER-Formal tools

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1200-1209

    For a service-oriented architecture based system, the problem of synthesizing a concrete model, i.e., behavioral model, for each service configuring the system from an abstract specification, which is referred to as choreography, is known as the choreography realization problem. In this paper, we assume that choreography is given by an acyclic relation. We have already shown that the condition for the behavioral model is given by lower and upper bounds of acyclic relations. Thus, the degree of freedom for behavioral models increases; developing algorithms of synthesizing an intelligible model for users becomes possible. In this paper, we introduce several metrics for intelligibility of state machines, and study the algorithm of synthesizing Pareto efficient state machines.

  • An Efficient Approximate Algorithm for the 1-Median Problem on a Graph

    Koji TABATA  Atsuyoshi NAKAMURA  Mineichi KUDO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/01/23
      Vol:
    E100-D No:5
      Page(s):
    994-1002

    We propose a heuristic approximation algorithm for the 1-median problem. The 1-median problem is the problem of finding a vertex with the highest closeness centrality. Starting from a randomly selected vertex, our algorithm repeats to find a vertex with higher closeness centrality by approximately calculating closeness centrality of each vertex using simpler spanning subgraphs, which are called k-neighbor dense shortest path graphs with shortcuts. According to our experimental results using real networks with more than 10,000 vertices, our algorithm is more than 100 times faster than the exhaustive search and more than 20 times faster than the state-of-the-art approximation algorithm using annotated information to the vertices while the solutions output by our algorithm have higher approximation ratio.

  • SpEnD: Linked Data SPARQL Endpoints Discovery Using Search Engines

    Semih YUMUSAK  Erdogan DOGDU  Halife KODAZ  Andreas KAMILARIS  Pierre-Yves VANDENBUSSCHE  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    758-767

    Linked data endpoints are online query gateways to semantically annotated linked data sources. In order to query these data sources, SPARQL query language is used as a standard. Although a linked data endpoint (i.e. SPARQL endpoint) is a basic Web service, it provides a platform for federated online querying and data linking methods. For linked data consumers, SPARQL endpoint availability and discovery are crucial for live querying and semantic information retrieval. Current studies show that availability of linked datasets is very low, while the locations of linked data endpoints change frequently. There are linked data respsitories that collect and list the available linked data endpoints or resources. It is observed that around half of the endpoints listed in existing repositories are not accessible (temporarily or permanently offline). These endpoint URLs are shared through repository websites, such as Datahub.io, however, they are weakly maintained and revised only by their publishers. In this study, a novel metacrawling method is proposed for discovering and monitoring linked data sources on the Web. We implemented the method in a prototype system, named SPARQL Endpoints Discovery (SpEnD). SpEnD starts with a “search keyword” discovery process for finding relevant keywords for the linked data domain and specifically SPARQL endpoints. Then, the collected search keywords are utilized to find linked data sources via popular search engines (Google, Bing, Yahoo, Yandex). By using this method, most of the currently listed SPARQL endpoints in existing endpoint repositories, as well as a significant number of new SPARQL endpoints, have been discovered. We analyze our findings in comparison to Datahub collection in detail.

  • Automatic and Effective Delineation of Coronary Arteries from CTA Data Using Two-Way Active Contour Model

    Sammer ZAI  Muhammad Ahsan ANSARI  Young Shik MOON  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/12/29
      Vol:
    E100-D No:4
      Page(s):
    901-909

    Precise estimation of coronary arteries from computed tomography angiography (CTA) data is one of the challenging problems. This study focuses on automatic delineation of coronary arteries from 3D CTA data that may assess the clinicians in identifying the coronary pathologies. In this work, we present a technique that effectively segments the complete coronary arterial tree under the guidance of initial vesselness response without relying on heavily manual operations. The proposed method isolates the coronary arteries with accuracy by using localized statistical energy model in two directions provided with an automated seed which ensures an optimal segmentation of the coronaries. The detection of seed is carried out by analyzing the shape information of the coronary arteries in three successive cross-sections. To demonstrate the efficiency of the proposed algorithm, the obtained results are compared with the reference data provided by Rotterdam framework for lumen segmentation and the level-set active contour based method proposed by Lankton et al. Results reveal that the proposed method performs better in terms of leakages and accuracy in completeness of the coronary arterial tree.

  • An Exact Algorithm for Lowest Edge Dominating Set

    Ken IWAIDE  Hiroshi NAGAMOCHI  

     
    PAPER

      Pubricized:
    2016/12/21
      Vol:
    E100-D No:3
      Page(s):
    414-421

    Given an undirected graph G, an edge dominating set is a subset F of edges such that each edge not in F is adjacent to some edge in F, and computing the minimum size of an edge dominating set is known to be NP-hard. Since the size of any edge dominating set is at least half of the maximum size µ(G) of a matching in G, we study the problem of testing whether a given graph G has an edge dominating set of size ⌈µ(G)/2⌉ or not. In this paper, we prove that the problem is NP-complete, whereas we design an O*(2.0801µ(G)/2)-time and polynomial-space algorithm to the problem.

  • A Linear Time Algorithm for Finding a Minimum Spanning Tree with Non-Terminal Set VNT on Outerplanar Graphs

    Shin-ichi NAKAYAMA  Shigeru MASUYAMA  

     
    PAPER

      Pubricized:
    2016/12/21
      Vol:
    E100-D No:3
      Page(s):
    434-443

    Given a graph G=(V, E), where V and E are vertex and edge sets of G, and a subset VNT of vertices called a non-terminal set, the minimum spanning tree with a non-terminal set VNT, denoted by MSTNT, is a connected and acyclic spanning subgraph of G that contains all vertices of V with the minimum weight where each vertex in a non-terminal set is not a leaf. On general graphs, the problem of finding an MSTNT of G is NP-hard. We show that if G is an outerplanar graph then finding an MSTNT of G is linearly solvable with respect to the number of vertices.

  • A Visibility-Based Lower Bound for Android Unlock Patterns

    Jinwoo LEE  Jae Woo SEO  Kookrae CHO  Pil Joong LEE  Dae Hyun YUM  

     
    LETTER-Information Network

      Pubricized:
    2016/12/01
      Vol:
    E100-D No:3
      Page(s):
    578-581

    The Android pattern unlock is a widely adopted graphical password system that requires a user to draw a secret pattern connecting points arranged in a grid. The theoretical security of pattern unlock can be defined by the number of possible patterns. However, only upper bounds of the number of patterns have been known except for 3×3 and 4×4 grids for which the exact number of patterns was found by brute-force enumeration. In this letter, we present the first lower bound by computing the minimum number of visible points from each point in various subgrids.

  • A Novel Linguistic Steganography Based on Synonym Run-Length Encoding

    Lingyun XIANG  Xinhui WANG  Chunfang YANG  Peng LIU  

     
    PAPER-Information Network

      Pubricized:
    2016/11/08
      Vol:
    E100-D No:2
      Page(s):
    313-322

    In order to prevent the synonym substitution breaking the balance among frequencies of synonyms and improve the statistical undetectability, this paper proposed a novel linguistic steganography based on synonym run-length encoding. Firstly, taking the relative word frequency into account, the synonyms appeared in the text are digitized into binary values and expressed in the form of runs. Then, message are embedded into the parities of runs' lengths by self-adaptively making a positive or negative synonym transformation on boundary elements of two adjacent runs, while preserving the number of relative high and low frequency synonyms to reduce the embedding distortion. Experimental results have shown that the proposed synonym run-length encoding based linguistic steganographic algorithm makes fewer changes on the statistical characteristics of cover texts than other algorithms, and enhances the capability of anti-steganalysis.

261-280hit(1406hit)