The search functionality is under construction.

Keyword Search Result

[Keyword] graph(1406hit)

141-160hit(1406hit)

  • An Evolutionary Game for Analyzing Switching Behavior of Consumers in Electricity Retail Markets

    Ryo HASE  Norihiko SHINOMIYA  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    407-416

    Many countries have deregulated their electricity retail markets to offer lower electricity charges to consumers. However, many consumers have not switched their suppliers after the deregulation, and electricity suppliers do not tend to reduce their charges intensely. This paper proposes an electricity market model and evolutionary game to analyze the behavior of consumers in electricity retail markets. Our model focuses on switching costs such as an effort at switching, costs in searching for other alternatives, and so on. The evolutionary game examines whether consumers choose a strategy involving exploration of new alternatives with the searching costs as “cooperators” or not. Simulation results demonstrate that the share of cooperators was not improved by simply giving rewards for cooperators as compensation for searching costs. Furthermore, the results also suggest that the degree of cooperators in a network among consumers has a vital role in increasing the share of cooperators and switching rate.

  • Topological Stack-Queue Mixed Layouts of Graphs

    Miki MIYAUCHI  

     
    PAPER-Graphs and Networks

      Vol:
    E103-A No:2
      Page(s):
    510-522

    One goal in stack-queue mixed layouts of a graph subdivision is to obtain a layout with minimum number of subdivision vertices per edge when the number of stacks and queues are given. Dujmović and Wood showed that for every integer s, q>0, every graph G has an s-stack q-queue subdivision layout with 4⌈log(s+q)q sn(G)⌉ (resp. 2+4⌈log(s+q)q qn(G)⌉) division vertices per edge, where sn(G) (resp. qn(G)) is the stack number (resp. queue number) of G. This paper improves these results by showing that for every integer s, q>0, every graph G has an s-stack q-queue subdivision layout with at most 2⌈logs+q-1sn(G)⌉ (resp. at most 2⌈logs+q-1qn(G)⌉ +4) division vertices per edge. That is, this paper improves previous results more, for graphs with larger stack number sn(G) or queue number qn(G) than given integers s and q. Also, the larger the given integer s is, the more this paper improves previous results.

  • Efficient Supergraph Search Using Graph Coding

    Shun IMAI  Akihiro INOKUCHI  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2019/09/26
      Vol:
    E103-D No:1
      Page(s):
    130-141

    This paper proposes a method for searching for graphs in the database which are contained as subgraphs by a given query. In the proposed method, the search index does not require any knowledge of the query set or the frequent subgraph patterns. In conventional techniques, enumerating and selecting frequent subgraph patterns is computationally expensive, and the distribution of the query set must be known in advance. Subsequent changes to the query set require the frequent patterns to be selected again and the index to be reconstructed. The proposed method overcomes these difficulties through graph coding, using a tree structured index that contains infrequent subgraph patterns in the shallow part of the tree. By traversing this code tree, we are able to rapidly determine whether multiple graphs in the database contain subgraphs that match the query, producing a powerful pruning or filtering effect. Furthermore, the filtering and verification steps of the graph search can be conducted concurrently, rather than requiring separate algorithms. As the proposed method does not require the frequent subgraph patterns and the query set, it is significantly faster than previous techniques; this independence from the query set also means that there is no need to reconstruct the search index when the query set changes. A series of experiments using a real-world dataset demonstrate the efficiency of the proposed method, achieving a search speed several orders of magnitude faster than the previous best.

  • Surface Clutter Suppression with FDTD Recovery Signal for Microwave UWB Mammography Open Access

    Kazuki NORITAKE  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/07/17
      Vol:
    E103-C No:1
      Page(s):
    26-29

    Microwave mammography is a promising alternative to X-ray based imaging modalities, because of its small size, low cost, and cell-friendly exposure. More importantly, this modality enables the suppression of surface reflection clutter, which can be enhanced by introducing accurate surface shape estimations. However, near-field measurements can reduce the shape estimation accuracy, due to a mismatch between the reference and observed waveforms. To mitigate this problem, this study incorporates envelope-based shape estimation and finite-difference time-domain (FDTD)-based waveform correction with a fractional derivative adjustment. Numerical simulations based on realistic breast phantoms derived from magnetic resonance imaging (MRI) show that the proposed method significantly enhances the accuracy of breast surface imaging and the performance of surface clutter rejection.

  • Improvement of the Quality of Visual Secret Sharing Schemes with Constraints on the Usage of Shares

    Mariko FUJII  Tomoharu SHIBUYA  

     
    PAPER

      Pubricized:
    2019/10/07
      Vol:
    E103-D No:1
      Page(s):
    11-24

    (k,n)-visual secret sharing scheme ((k,n)-VSSS) is a method to divide a secret image into n images called shares that enable us to restore the original image by only stacking at least k of them without any complicated computations. In this paper, we consider (2,2)-VSSS to share two secret images at the same time only by two shares, and investigate the methods to improve the quality of decoded images. More precisely, we consider (2,2)-VSSS in which the first secret image is decoded by stacking those two shares in the usual way, while the second one is done by stacking those two shares in the way that one of them is used reversibly. Since the shares must have some subpixels that inconsistently correspond to pixels of the secret images, the decoded pixels do not agree with the corresponding pixels of the secret images, which causes serious degradation of the quality of decoded images. To reduce such degradation, we propose several methods to construct shares that utilize 8-neighbor Laplacian filter and halftoning. Then we show that the proposed methods can effectively improve the quality of decoded images. Moreover, we demonstrate that the proposed methods can be naturally extended to (2,2)-VSSS for RGB images.

  • Joint Optimization of Delay Guarantees and Resource Allocation for Service Function Chaining

    Yunjie GU  Yuehang DING  Yuxiang HU  

     
    LETTER-Information Network

      Pubricized:
    2019/09/19
      Vol:
    E102-D No:12
      Page(s):
    2611-2614

    A Service Function Chain (SFC) is an ordered sequence of virtual network functions (VNFs) to provide network service. Most existing SFC orchestration schemes, however, cannot optimize the resources allocation while guaranteeing the service delay constraint. To fulfill this goal, we propose a Layered Graph based SFC Orchestration Scheme (LGOS). LGOS converts both the cost of resource and the related delay into the link weights in the layered graph, which helps abstract the SFC orchestration problem as a shortest path problem. Then a simulated annealing based batch processing algorithm is designed for SFC requests set. Through extensive evaluations, we demonstrated that our scheme can reduce the end-to-end delay and the operational expenditure by 21.6% and 13.7% at least, and the acceptance ratio of requests set can be improved by 22.3%, compared with other algorithms.

  • On the Performance Analysis of SPHINCS+ Verification

    Tae Gu KANG  Jinwoo LEE  Junyeng KIM  Dae Hyun YUM  

     
    LETTER-Information Network

      Pubricized:
    2019/09/20
      Vol:
    E102-D No:12
      Page(s):
    2603-2606

    SPHINCS+, an updated version of SPHINCS, is a post-quantum hash-based signature scheme submitted to the NIST post-quantum cryptography standardization project. To evaluate its performance, SPHINCS+ gives the theoretical number of function calls and the actual runtime of a reference implementation. We show that the theoretical number of function calls for SPHINCS+ verification is inconsistent with the runtime and then present the correct number of function calls.

  • Sampling Shape Contours Using Optimization over a Geometric Graph

    Kazuya OSE  Kazunori IWATA  Nobuo SUEMATSU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/09/11
      Vol:
    E102-D No:12
      Page(s):
    2547-2556

    Consider selecting points on a contour in the x-y plane. In shape analysis, this is frequently referred to as contour sampling. It is important to select the points such that they effectively represent the shape of the contour. Generally, the stroke order and number of strokes are informative for that purpose. Several effective methods exist for sampling contours drawn with a certain stroke order and number of strokes, such as the English alphabet or Arabic figures. However, many contours entail an uncertain stroke order and number of strokes, such as pictures of symbols, and little research has focused on methods for sampling such contours. This is because selecting the points in this case typically requires a large computational cost to check all the possible choices. In this paper, we present a sampling method that is useful regardless of whether the contours are drawn with a certain stroke order and number of strokes or not. Our sampling method thereby expands the application possibilities of contour processing. We formulate contour sampling as a discrete optimization problem that can be solved using a type of direct search. Based on a geometric graph whose vertices are the points and whose edges form rectangles, we construct an effective objective function for the problem. Using different shape datasets, we demonstrate that our sampling method is effective with respect to shape representation and retrieval.

  • Wireless Power Transfer in the Radiative Near-Field Using a Novel Reconfigurable Holographic Metasurface Aperture Open Access

    Wenyu LUO  

     
    LETTER-Power Transmission

      Vol:
    E102-A No:12
      Page(s):
    1928-1931

    In this letter, we propose a novel wireless power transfer (WPT) scheme in the radiative near-field (Fresnel) region, which based on machine vision and dynamically reconfigurable holographic metasurface aperture capable of focusing power to multiple spots simultaneously without any information feedback. The states of metamaterial elements, formed by tunable meander line resonators, is determined using holographic design principles, in which the interference pattern of reference mode and the desired radiated field pattern leads to the required phase distribution over the surface of the aperture. The three-dimensional position information of mobile point sources is determined by machine visual localization, which can be used to obtain the aperture field. In contrast to the existing research studies, the proposed scheme is not only designed to achieve free multi-focuses, but also with machine vision, low-dimensionality, high transmission efficiency, real-time continuous reconfigurability and so on. The accuracy of the analysis is confirmed using numerical simulation.

  • A Topology Control Strategy with Efficient Path for Predictable Delay-Tolerant Networks

    Dawei YAN  Cong LIU  Peng YOU  Shaowei YONG  Dongfang GUAN  Yu XING  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2183-2198

    In wireless networks, efficient topology improves the performance of network protocols. The previous research mainly focuses on how to construct a cost-efficient network structure from a static and connected topology. Due to lack of continuous connectivity in the underlying topology, most traditional topology control methods are not applicable to the delay or disruption tolerant networks (DTNs). In this paper, we consider the topology control problem in a predictable DTN where the dynamic topology is known a priori or can be predicted over time. First, this dynamic topology is modeled by a directed space-time graph that includes spatial and temporal information. Second, the topology control problem of the predictable DTN is formulated as building a sparse structure. For any pair devices, there is an efficient path connecting them to improve the efficiency of the generated structure. Then, a topology control strategy is proposed for this optimization problem by using a kth shortest paths algorithm. Finally, simulations are conducted on random networks and a real-world DTN tracing date. The results demonstrate that the proposed method can significantly improve the efficiency of the generated structure and reduce the total cost.

  • Rootkit inside GPU Kernel Execution

    Ohmin KWON  Hyun KWON  Hyunsoo YOON  

     
    LETTER-Dependable Computing

      Pubricized:
    2019/08/19
      Vol:
    E102-D No:11
      Page(s):
    2261-2264

    We propose a rootkit installation method inside a GPU kernel execution process which works through GPU context manipulation. In GPU-based applications such as deep learning computations and cryptographic operations, the proposed method uses the feature by which the execution flow of the GPU kernel obeys the GPU context information in GPU memory. The proposed method consists of two key ideas. The first is GPU code manipulation, which is able to hijack the execution flow of the original GPU kernel to execute an injected payload without affecting the original GPU computation result. The second is a self-page-table update execution during which the GPU kernel updates its page table to access any location in system memory. After the installation, the malicious payload is executed only in the GPU kernel, and any no evidence remains in system memory. Thus, it cannot be detected by conventional rootkit detection methods.

  • Synchronized Tracking in Multiple Omnidirectional Cameras with Overlapping View

    Houari SABIRIN  Hitoshi NISHIMURA  Sei NAITO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/24
      Vol:
    E102-D No:11
      Page(s):
    2221-2229

    A multi-camera setup for a surveillance system enables a larger coverage area, especially when a single camera has limited monitoring capability due to certain obstacles. Therefore, for large-scale coverage, multiple cameras are the best option. In this paper, we present a method for detecting multiple objects using several cameras with large overlapping views as this allows synchronization of object identification from a number of views. The proposed method uses a graph structure that is robust enough to represent any detected moving objects by defining their vertices and edges to determine their relationships. By evaluating these object features, represented as a set of attributes in a graph, we can perform lightweight multiple object detection using several cameras, as well as performing object tracking within each camera's field of view and between two cameras. By evaluating each vertex hierarchically as a subgraph, we can further observe the features of the detected object and perform automatic separation of occluding objects. Experimental results show that the proposed method would improve the accuracy of object tracking by reducing the occurrences of incorrect identification compared to individual camera-based tracking.

  • High Noise Tolerant R-Peak Detection Method Based on Deep Convolution Neural Network

    Menghan JIA  Feiteng LI  Zhijian CHEN  Xiaoyan XIANG  Xiaolang YAN  

     
    LETTER-Biological Engineering

      Pubricized:
    2019/08/02
      Vol:
    E102-D No:11
      Page(s):
    2272-2275

    An R-peak detection method with a high noise tolerance is presented in this paper. This method utilizes a customized deep convolution neural network (DCNN) to extract morphological and temporal features from sliced electrocardiogram (ECG) signals. The proposed network adopts multiple parallel dilated convolution layers to analyze features from diverse fields of view. A sliding window slices the original ECG signals into segments, and then the network calculates one segment at a time and outputs every point's probability of belonging to the R-peak regions. After a binarization and a deburring operation, the occurrence time of the R-peaks can be located. Experimental results based on the MIT-BIH database show that the R-peak detection accuracies can be significantly improved under high intensity of the electrode motion artifact or muscle artifact noise, which reveals a higher performance than state-of-the-art methods.

  • An Exact Algorithm for the Arrow Placement Problem in Directed Graph Drawings

    Naoto KIDO  Sumio MASUDA  Kazuaki YAMAGUCHI  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E102-A No:11
      Page(s):
    1481-1489

    We consider the problem of placing arrows, which indicate the direction of each edge in directed graph drawings, without making them overlap other arrows, vertices and edges as much as possible. The following two methods have been proposed for this problem. One is an exact algorithm for the case in which the position of each arrow is restricted to some discrete points. The other is a heuristic algorithm for the case in which the arrow is allowed to move continuously on each edge. In this paper, we assume that the arrow positions are not restricted to discrete points and propose an exact algorithm for the problem of finding an arrow placement such that (a) the weighted sum of the numbers of overlaps with edges, vertices and other arrows is minimized and (b) the sum of the distances between the arrows and their edges' terminal vertices is minimized as a secondary objective. The proposed method solves this problem by reducing it to a mixed integer linear programming problem. Since this is an exponential time algorithm, we add a simple procedure as preprocessing to reduce the running time. Experimental results show that the proposed method can find a better arrow placement than the previous methods and the procedure for reducing the running time is effective.

  • An Efficient Parallel Triangle Enumeration on the MapReduce Framework

    Hongyeon KIM  Jun-Ki MIN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/11
      Vol:
    E102-D No:10
      Page(s):
    1902-1915

    A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.

  • A Hypergraph Matching Labeled Multi-Bernoulli Filter for Group Targets Tracking Open Access

    Haoyang YU  Wei AN  Ran ZHU  Ruibin GUO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/01
      Vol:
    E102-D No:10
      Page(s):
    2077-2081

    This paper addresses the association problem of tracking closely spaced targets in group or formation. In the Labeled Multi-Bernoulli Filter (LMB), the weight of a hypothesis is directly affected by the distance between prediction and measurement. This may generate false associations when dealing with the closely spaced multiple targets. Thus we consider utilizing structure information among the group or formation. Since, the relative position relation of the targets in group or formation varies slightly within a short time, the targets are considered as nodes of a topological structure. Then the position relation among the targets is modeled as a hypergraph. The hypergraph matching method is used to resolve the association matrix. At last, with the structure prior information introduced, the new joint cost matrix is re-derived to generate hypotheses, and the filtering recursion is implemented in a Gaussian mixture way. The simulation results show that the proposed algorithm can effectively deal with group targets and is superior to the LMB filter in tracking precision and accuracy.

  • A Hybrid CRBP-VMP Cooperative Positioning Algorithm for Distributed Multi-UAVs

    Lu LU  Guangxia LI  Tianwei LIU  Siming LI  Shiwei TIAN  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1933-1940

    Positioning information plays a significant role in multi-unmanned aerial vehicles (UAVs) applications. Traditionally, the positioning information is widely provided by Global Navigation Satellite System (GNSS) due to its good performance and global coverage. However, owing to complicated flight environment or signal blockage, jamming and unintentional interference, the UAVs may fail to locate themselves by using GNSS alone. As a new method to resolve these problems, cooperative positioning, by incorporating peer-to-peer range measurements and assisted information, has attracted more and more attentions due to its ability to enhance the accuracy and availability of positioning. However, achieving good performance of cooperative positioning of multi-UAVs is challenging as their mobility, arbitrary nonlinear state-evolution, measurement models and limited computation and communication resources. In this paper, we present a factor graph (FG) representation and message passing methodology to solve cooperative positioning problem among UAVs in 3-dimensional environment where GNSS cannot provide services. Moreover, to deal with the nonlinear state-evolution and measurement models while decreasing the computation complexity and communication cost, we develop a distributed algorithm for dynamic and hybrid UAVs by means of Spherical-Radial Cubature Rules (CR) method with belief propagation (BP) and variational message passing (VMP) methods (CRBP-VMP) on the FG. The proposed CRBP deals with the highly non-linear state-evolution models and non-Gaussian distributions, the VMP method is employed for ranging message, gets the simpler message representation and can reduce communication cost in the joint estimation problem. Simulation results demonstrate that the higher positioning accuracy, the better convergence as well as low computational complexity and communication cost of the proposed CRBP-VMP algorithm, which can be achieved compared with sum-product algorithm over a wireless network (SPAWN) and traditional Cubature Kalman Filters (CKF) method.

  • Protograph-Based LDPC Coded System for Position Errors in Racetrack Memories

    Ryo SHIBATA  Gou HOSOYA  Hiroyuki YASHIMA  

     
    PAPER-Coding Theory

      Vol:
    E102-A No:10
      Page(s):
    1340-1350

    In racetrack memories (RM), a position error (insertion or deletion error) results from unstable data reading. For position errors in RM with multiple read-heads (RHs), we propose a protograph-based LDPC coded system specified by a protograph and a protograph-aware permutation. The protograph-aware permutation facilitates the design and analysis of the coded system. By solving a multi-objective optimization problem, the coded system attains the properties of fast convergence decoding, a good decoding threshold, and a linear minimum distance growth. In addition, the coded system can adapt to varying numbers of RHs without any modification. The asymptotic decoding thresholds with a limited number of iterations verify the good properties of the system. Furthermore, for varying numbers of RHs, the simulation results with both small and large number of iterations, exhibit excellent decoding performances, both with short and long block lengths, and without error floors.

  • Scalable Community Identification with Manifold Learning on Speaker I-Vector Space

    Hongcui WANG  Shanshan LIU  Di JIN  Lantian LI  Jianwu DANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/07/10
      Vol:
    E102-D No:10
      Page(s):
    2004-2012

    Recognizing the different segments of speech belonging to the same speaker is an important speech analysis task in various applications. Recent works have shown that there was an underlying manifold on which speaker utterances live in the model-parameter space. However, most speaker clustering methods work on the Euclidean space, and hence often fail to discover the intrinsic geometrical structure of the data space and fail to use such kind of features. For this problem, we consider to convert the speaker i-vector representation of utterances in the Euclidean space into a network structure constructed based on the local (k) nearest neighbor relationship of these signals. We then propose an efficient community detection model on the speaker content network for clustering signals. The new model is based on the probabilistic community memberships, and is further refined with the idea that: if two connected nodes have a high similarity, their community membership distributions in the model should be made close. This refinement enhances the local invariance assumption, and thus better respects the structure of the underlying manifold than the existing community detection methods. Some experiments are conducted on graphs built from two Chinese speech databases and a NIST 2008 Speaker Recognition Evaluations (SREs). The results provided the insight into the structure of the speakers present in the data and also confirmed the effectiveness of the proposed new method. Our new method yields better performance compared to with the other state-of-the-art clustering algorithms. Metrics for constructing speaker content graph is also discussed.

  • A Fully-Connected Ising Model Embedding Method and Its Evaluation for CMOS Annealing Machines

    Daisuke OKU  Kotaro TERADA  Masato HAYASHI  Masanao YAMAOKA  Shu TANAKA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/06/10
      Vol:
    E102-D No:9
      Page(s):
    1696-1706

    Combinatorial optimization problems with a large solution space are difficult to solve just using von Neumann computers. Ising machines or annealing machines have been developed to tackle these problems as a promising Non-von Neumann computer. In order to use these annealing machines, every combinatorial optimization problem is mapped onto the physical Ising model, which consists of spins, interactions between them, and their external magnetic fields. Then the annealing machines operate so as to search the ground state of the physical Ising model, which corresponds to the optimal solution of the original combinatorial optimization problem. A combinatorial optimization problem can be firstly described by an ideal fully-connected Ising model but it is very hard to embed it onto the physical Ising model topology of a particular annealing machine, which causes one of the largest issues in annealing machines. In this paper, we propose a fully-connected Ising model embedding method targeting for CMOS annealing machine. The key idea is that the proposed method replicates every logical spin in a fully-connected Ising model and embeds each logical spin onto the physical spins with the same chain length. Experimental results through an actual combinatorial problem show that the proposed method obtains spin embeddings superior to the conventional de facto standard method, in terms of the embedding time and the probability of obtaining a feasible solution.

141-160hit(1406hit)