Kazukiyo JOSHIN Yasuhiro NAKASHA Taisuke IWAI Takumi MIYASHITA Shiro OHARA
Second harmonic signal feedback technique is applied to an HBT power amplifier for Wide-band CDMA (W-CDMA) mobile communication system to improve its linearity and efficiency. This paper describes the feedback effect of the 2nd harmonic signal from the output of the amplifier to the input on the 3rd order intermodulation distortion (IMD) products and Adjacent Channel leakage Power (ACP) of the power amplifier. The feedback amplifier, using an InGaP/GaAs HBT with 48 fingers of 3 20 µ m emitter, exhibits a 10 dB reduction in the level of the 3rd order IMD products. In addition, an ACP improvement of 7 dB for the QPSK modulation signal with a chip rate of 4.096 Mcps at 1.95 GHz was realized. As a result, the amplifier achieves a power-added efficiency of 41.5%, gain of 15.3 dB, and ACP of 43.0 dBc at a 5 MHz offset frequency and output power of 27.5 dBm. At the output power of 28 dBm, the power-added efficiency increases to 43.3% with an ACP of 40.8 dBc.
An optimum filter for extracting a time-varying harmonic signal from the noise-corrupted measurement is proposed. It is derived as a solution of the least mean square estimation with consideration of the pitch estimation error even without any assumption on the filter model. We obtain a comb-like impulse response which consists of homologous and dilated distribution of weights just located periodically with a pitch interval. This remarkable structure is well suited to the proportionally expanding error of pitch repetition times. Examples of the filter design are presented, and the performance of noise suppression is examined by comparison with conventional comb filters.
Matthias LENZNER Matthias SCHNURER Christian SPIELMANN Ferenc KRAUSZ
Recent advances in solid-state laser technology and ultrafast optics led to the generation of optical pulses as short as 5 femtoseconds with peak powers up to the subterawatt level from a compact kHz-repetition-rate all-solid-state laser. This source significantly pushes the frontiers of nonlinear optics. Exciting new possibilities include the investigation and exploitation of reversible nonlinear optical processes in solids at unprecedented intensity levels, the development of a compact laser-driven coherent soft-X ray source at photon energies near 1 keV, and the generation of attosecond xuv pulses. First, a brief review of recent milestones in the evolution of ultrafast laser technology is given, followed by a description of the high-power 5-fs source. The rest of the paper is devoted to applications in previously inaccessible regimes of nonlinear optics. We demonstrate that wide-gap dielectrics resist intensities in excess of 1014 W/cm2 in the sub-10 fs regime and the extension of high-harmonic generation in helium to wavelengths shorter than 2. 4 nm (Eph > 0. 5 keV).
This paper deals with a probabilistic formulation of the diffraction and scattering of a plane wave from a periodic surface randomly deformed by a binary sequence. The scattered wave is shown to have a stochastic Floquet's form, that is a product of a periodic stationary random function and an exponential phase factor. Such a periodic stationary random function is then represented in terms of a harmonic series representation similar to Fourier series, where `Fourier coefficients' are mutually correlated stationary processes rather than constants. The mutually correlated stationary processes are written by binary orthogonal functionals with unknown binary kernels. When the surface deformations are small compared with wavelength, an approximate solution is obtained for low-order binary kernels, from which the scattering cross section, coherently diffracted power and the optical theorem are numerically calculated and are illustrated in figures.
Takashi HISAKADO Kohshi OKUMURA
This paper presents the several bifurcation phenomena of harmonic oscillations occurred in nonlinear three-phase circuit. The circuit consists of delta-connected nonlinear inductors, capacitors and three-phase symmetrical voltage sources. We analyze the bifurcations of the oscillations by the homotopy method. Additionally, we confirm the bifurcation phenomena by real experiments. Furthermore, we reveal the effect of nonlinear couplings of inductors by the comparison of harmonic oscillations in a single-phase circuit.
Masahiro MAEDA Morio NAKAMURA Shigeru MORIMOTO Hiroyuki MASATO Yorito OTA
A small-sized three-stage GaAs power module has been developed for portable digital radios using M-16QAM modulation. This module has exhibited typical P1dB of 10 W with PAE of 48% and a power gain of 35 dB at a low supply voltage of 6.5 V in 1.453-1.477 GHz band. The volume of the module is only 1.5 cc, which is one of the smallest value in 10 W class modules ever reported. In order to realize the reduced size and the high power performances simultaneously, the module has employed new power divider/combiner circuits with significant features of the reduced occupation area, the improved isolation properties and the function of second-harmonic control.
The dipole-dipole interaction in the quantum mechanical treatment of the matter-radiation dynamics, is shown to give rise to split energy levels reminiscent of the nonlinear coupled spectral features as well as a self-sustained coherent modes. Wiener's theory of nonlinear random processes is applied to the second harmonic generation (SHG), leading also to coupled spectral pulling and dipping features, due to the dual noise sources in the fundamental and the harmonic polarizations. Furthermore, the nonlinear spectral features are suggested to be applied to implement quantum (qubit) gates for computation.
Jiro ISHIKAWA Hisato FUJISAKA Chikara SATO
It is important to analyze a tracking or synchronizing process in Spread Spectrum (SS) receiving system. The most common SS tracking system considered here consists of pseudorandom (PN) generator, Lowpass Filter (LPE) and Voltage Controlled Oscillator (VCO). The SS receiver is to track or synchronize its local PN generator to the received PN waveform by VCO. The fundamental equation of the system is known by a second order nonlinear differential equation in terms of phase difference between local PN generator and received PN waveform. The differential equation is nonautonoumous due to PN function of time t with period T. Picking up the gain of VCO as the main parameter in the system we show that the system has bifurcation from the normal oscillation through subharmonic oscillation to finally chaos. In the final case, chaos is confirmed by investigating maximum Liapunov number and both stable and unstable manifolds.
Toshihiko ABE Takao KOBAYASHI Satoshi IMAI
This paper proposes a technique for estimating the harmonic frequencies based on instantaneous frequency (IF) of speech signals. The main problem is how to decompose the speech signal into the harmonic components. For this purpose, we use a set of bandpass-filters, each of whose center frequencies changes with time in order to track the instantaneous freuency of its output. As a result, the outputs of the band-pass filters become the harmonic components, and the instantaneous frequencies of the harmonics are accurately estimated. To evaluate the effectiveness of the approach, we apply it to pitch determination of speech. Pitch determination is simply accomplished by selecting the correct fundamental frequency out of the harmonic components. It is confirmed that the pitch extraction using the proposed pitch determination algorithm (PDA) is stable and accurate. The most significant feature of the PDA is that the extracted pitch contour is smooth and it requires no post-processing such as nonlinear filtering or any smoothing processes. Several examples are presented to demonstrate the capability of the harmonics estimation technique and the PDA.
Kenji KAMOGAWA Ichihiko TOYODA Tsuneo TOKUMITSU
A subharmonic injection-locked oscillator (ILO) MMIC chain is proposed for the local oscillators and synthesizers used at millimeter-wave frequencies. A fabricated, primary 11-GHz-band injection-locked oscillator MMIC for the first stage ILO in the ILO-chain MMIC, achieves a wide subharmonic-injection-locking range at the subharmonic factors, 1/n (n=1, 2, 3, ), of 1/1, 1/2 and 1/3. The ILO MMIC abilities for synthesizer applications were confirmed with an injection-locking time of only 100-200 nsec, which is less than 1/100 that of PLL oscillators, and also with free-running oscillation performance and a wide injection locking range within a temperature range of -30 and 80.
Electromagnetic environments generated by power transmission system, possibilities of the interference and its mitigation method was introduced. In the frequency region below 10kHz, concern for DC and AC electric and magnetic field are described. In the frequency range above 10kHz, concern for discharges on power apparatus, electromagnetic emvironments generated by carrier system and fault locating system and passive interference are described. Electromagnetic environment caused by load equipments, that is harmonics, and undesirable electromagnetic emission from power converting units are described finally.
We introduce a procedure to determine the discrete Fourier spectra of the band-limited function from its irregularly distributed samples. The nonuniform data of the signal are represented by the non-orthogonal basis functions (non-harmonic Fourier functions) and discrete Fourier spectra of the signal. We construct a set of orthonormal basis functions from the above mentioned non-orthogonal basis functions using the Gram-Schmidt procedure. Based on the G-S procedure and the property of the orthogonalization, the spectral components of signal can be obtained by the conjugate transpose of orthonormal basis functions, their coefficients matrix and the nonuniform samples. Thus the desired signal can be obtained by the inverse Fourier transform of the determined discrete Fourier spectra. We apply this algorithm to reconstruct a band-limited low-pass and band-pass signal and show that our method provide more stable and better reconstruction than the matrix inversion method.
Takeshi KINOSHITA Keiji TSUCHIYA Keisuke SASAKI Yasuhiko YOKOH Hidetomo ASHITAKA Naoya OGATA
Efficiency of Cerenkov-radiation-type second harmonic generation with absorption loss for second harmonic wave is analytically estimated. Output power reduction for attenuation coefficient of 2.0104 cm1 is calculated 37% (63% output of lossless case). Blue SHG at 443.5 nm is observed by a poled polymer pNAn-PVA waveguide. The wavelength is shorter than the cut-off wavelength of 480 nm.
Takeshi KINOSHITA Suguru HORINOUCHI Keisuke SASAKI Hidenori OKAMOTO Norihiro TANAKA
This paper describes blue second harmonic generation (SHG) by an organic crystal of 2-furyl methacrylic anhydride (FMA). It has short cut-off wavelength of 380 nm and SHG coefficients at 1064 nm. d3324 pm/V and d3116 pm/V. In 900 nm region 90-degree phase-matched blue SHG is observed using a Ti: Sapphire laser as a fundamental source. This crystal is not hygroscopic and does not exhibit sublimation at room temperature. Fine polishing is also possible.
Okihiro SUGIHARA Yasuhiko HIRANO Naomichi OKAMOTO Yutaka TAKETANI
Poled polymer films doped with novel nonlinear organic materials, α-cyano unsaturated carboxylic acid (α-CUCA) derivatives, are prepared. Linear and second-order nonlinear optical properties are investigated. It is found that as the value of hyperpolarizability of the derivatives increases, the second-order nonlinear susceptibility of the film increases. Cerenkov-type second harmonic generation (SHG) of Nd: YAG laser is realized in a poled polymer waveguide doped with the α-CUCA material with a slight absorption at doubled wavelength.
This paper describes the novel relaxation-based algorithm for the harmonic analysis of nonlinear circuits. First, we present Iterated Spectrum Analysis based on harmonic balance method, where the harmonic balance method is applied to every node independently. As a result, we can avoid dealing with large scale Jacobian matrices and reduce the total simulation time, compared with the conventional method based on Galerkin's procedure or the harmonic balance method. Next, we define the frequency domain latency. Furthermore, we refer to the possibility for exploitation of three types of latency, i.e., relaxation iteration latency, frequency domain latency and Newton iteration latency. And we propose the multirate-sampling technique based on the consideration of the frequency domain latency. Finally, we apply the present technique to the simple analog circuit simulation and verify its availability for the harmonic analysis.
The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)X(n)/(X(1))n both for the second (n2) and third-order (n3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.
The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)=X(n)/(X(l))n both for the second (n=2) and third-order (n=3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.