The search functionality is under construction.

Keyword Search Result

[Keyword] inspection(55hit)

1-20hit(55hit)

  • Prohibited Item Detection Within X-Ray Security Inspection Images Based on an Improved Cascade Network Open Access

    Qingqi ZHANG  Xiaoan BAO  Ren WU  Mitsuru NAKATA  Qi-Wei GE  

     
    PAPER

      Pubricized:
    2024/01/16
      Vol:
    E107-A No:5
      Page(s):
    813-824

    Automatic detection of prohibited items is vital in helping security staff be more efficient while improving the public safety index. However, prohibited item detection within X-ray security inspection images is limited by various factors, including the imbalance distribution of categories, diversity of prohibited item scales, and overlap between items. In this paper, we propose to leverage the Poisson blending algorithm with the Canny edge operator to alleviate the imbalance distribution of categories maximally in the X-ray images dataset. Based on this, we improve the cascade network to deal with the other two difficulties. To address the prohibited scale diversity problem, we propose the Re-BiFPN feature fusion method, which includes a coordinate attention atrous spatial pyramid pooling (CA-ASPP) module and a recursive connection. The CA-ASPP module can implicitly extract direction-aware and position-aware information from the feature map. The recursive connection feeds the CA-ASPP module processed multi-scale feature map to the bottom-up backbone layer for further multi-scale feature extraction. In addition, a Rep-CIoU loss function is designed to address the overlapping problem in X-ray images. Extensive experimental results demonstrate that our method can successfully identify ten types of prohibited items, such as Knives, Scissors, Pressure, etc. and achieves 83.4% of mAP, which is 3.8% superior to the original cascade network. Moreover, our method outperforms other mainstream methods by a significant margin.

  • Dual Cuckoo Filter with a Low False Positive Rate for Deep Packet Inspection

    Yixuan ZHANG  Meiting XUE  Huan ZHANG  Shubiao LIU  Bei ZHAO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/01/26
      Vol:
    E106-A No:8
      Page(s):
    1037-1042

    Network traffic control and classification have become increasingly dependent on deep packet inspection (DPI) approaches, which are the most precise techniques for intrusion detection and prevention. However, the increasing traffic volumes and link speed exert considerable pressure on DPI techniques to process packets with high performance in restricted available memory. To overcome this problem, we proposed dual cuckoo filter (DCF) as a data structure based on cuckoo filter (CF). The CF can be extended to the parallel mode called parallel Cuckoo Filter (PCF). The proposed data structure employs an extra hash function to obtain two potential indices of entries. The DCF magnifies the superiority of the CF with no additional memory. Moreover, it can be extended to the parallel mode, resulting in a data structure referred to as parallel Dual Cuckoo filter (PDCF). The implementation results show that using the DCF and PDCF as identification tools in a DPI system results in time improvements of up to 2% and 30% over the CF and PCF, respectively.

  • An Improved Insulator and Spacer Detection Algorithm Based on Dual Network and SSD

    Yong LI  Shidi WEI  Xuan LIU  Yinzheng LUO  Yafeng LI  Feng SHUANG  

     
    PAPER-Smart Industry

      Pubricized:
    2022/10/17
      Vol:
    E106-D No:5
      Page(s):
    662-672

    The traditional manual inspection is gradually replaced by the unmanned aerial vehicles (UAV) automatic inspection. However, due to the limited computational resources carried by the UAV, the existing deep learning-based algorithm needs a large amount of computational resources, which makes it impossible to realize the online detection. Moreover, there is no effective online detection system at present. To realize the high-precision online detection of electrical equipment, this paper proposes an SSD (Single Shot Multibox Detector) detection algorithm based on the improved Dual network for the images of insulators and spacers taken by UAVs. The proposed algorithm uses MnasNet and MobileNetv3 to form the Dual network to extract multi-level features, which overcomes the shortcoming of single convolutional network-based backbone for feature extraction. Then the features extracted from the two networks are fused together to obtain the features with high-level semantic information. Finally, the proposed algorithm is tested on the public dataset of the insulator and spacer. The experimental results show that the proposed algorithm can detect insulators and spacers efficiently. Compared with other methods, the proposed algorithm has the advantages of smaller model size and higher accuracy. The object detection accuracy of the proposed method is up to 95.1%.

  • Non-Destructive Inspection of Twisted Wire in Resin Cover Using Terahertz Wave Open Access

    Masaki NAKAMORI  Yukihiro GOTO  Tomoya SHIMIZU  Nazuki HONDA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2022/04/13
      Vol:
    E105-B No:10
      Page(s):
    1202-1208

    We proposed a new method for evaluating the deterioration of messenger wires by using terahertz waves. We use terahertz time-domain spectroscopy to measure several twisted wire samples with different levels of deterioration. We find that each twisted wire sample had a different distribution of reflection intensity which was due to the wires' twist structure. We show that it is possible to assess the degradation from the straight lines present in the reflection intensity distribution image. Furthermore, it was confirmed that our method can be applied to wire covered with resin.

  • A Visual Inspection System for Accurate Positioning of Railway Fastener

    Jianwei LIU  Hongli LIU  Xuefeng NI  Ziji MA  Chao WANG  Xun SHAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/07/17
      Vol:
    E103-D No:10
      Page(s):
    2208-2215

    Automatic disassembly of railway fasteners is of great significance for improving the efficiency of replacing rails. The accurate positioning of fastener is the key factor to realize automatic disassembling. However, most of the existing literature mainly focuses on fastener region positioning and the literature on accurate positioning of fasteners is scarce. Therefore, this paper constructed a visual inspection system for accurate positioning of fastener (VISP). At first, VISP acquires railway image by image acquisition subsystem, and then the subimage of fastener can be obtained by coarse-to-fine method. Subsequently, the accurate positioning of fasteners can be completed by three steps, including contrast enhancement, binarization and spike region extraction. The validity and robustness of the VISP were verified by vast experiments. The results show that VISP has competitive performance for accurate positioning of fasteners. The single positioning time is about 260ms, and the average positioning accuracy is above 90%. Thus, it is with theoretical interest and potential industrial application.

  • A Two-Stage Crack Detection Method for Concrete Bridges Using Convolutional Neural Networks

    Yundong LI  Weigang ZHAO  Xueyan ZHANG  Qichen ZHOU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/09/05
      Vol:
    E101-D No:12
      Page(s):
    3249-3252

    Crack detection is a vital task to maintain a bridge's health and safety condition. Traditional computer-vision based methods easily suffer from disturbance of noise and clutters for a real bridge inspection. To address this limitation, we propose a two-stage crack detection approach based on Convolutional Neural Networks (CNN) in this letter. A predictor of small receptive field is exploited in the first detection stage, while another predictor of large receptive field is used to refine the detection results in the second stage. Benefiting from data fusion of confidence maps produced by both predictors, our method can predict the probability belongs to cracked areas of each pixel accurately. Experimental results show that the proposed method is superior to an up-to-date method on real concrete surface images.

  • Ultra-Low Field MRI Food Inspection System Using HTS-SQUID with Flux Transformer

    Saburo TANAKA  Satoshi KAWAGOE  Kazuma DEMACHI  Junichi HATTA  

     
    PAPER-Superconducting Electronics

      Vol:
    E101-C No:8
      Page(s):
    680-684

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system with a tuned high-Tc (HTS)-rf-SQUID for food inspection. We previously reported that a small hole in a piece of cucumber can be detected. The acquired image was based on filtered back-projection reconstruction using a polarizing permanent magnet. However the resolution of the image was insufficient for food inspection and took a long time to process. The purpose of this study is to improve image quality and shorten processing time. We constructed a specially designed cryostat, which consists of a liquid nitrogen tank for cooling an electromagnetic polarizing coil (135mT) at 77K and a room temperature bore. A Cu pickup coil was installed at the room temperature bore and detected an NMR signal from a sample. The signal was then transferred to an HTS SQUID via an input coil. Following a proper MRI sequence, spatial frequency data at 64×32 points in k-space were obtained. Then, a 2D-FFT (Fast Fourier Transformation) method was applied to reconstruct the 2D-MR images. As a result, we successfully obtained a clear water image of the characters “TUT”, which contains a narrowest width of 0.5mm. The imaging time was also shortened by a factor of 10 when compared to the previous system.

  • Calibration Method for Multi Static Linear Array Radar with One Dimensional Array Antenna Arranged in Staggered Manner

    Yasunari MORI  Takayoshi YUMII  Yumi ASANO  Kyouji DOI  Christian N. KOYAMA  Yasushi IITSUKA  Kazunori TAKAHASHI  Motoyuki SATO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    26-34

    This paper presents a calibration method for RF switch channels of a near-range multistatic linear array radar. The method allows calibration of the channel transfer functions of the RF switches and antenna transfer functions in frequency domain data, without disconnecting the antennas from the radar system. In addition, the calibration of the channels is independent of the directivities of the transmitting and receiving antennas. We applied the calibration method to a 3D imaging step-frequency radar system at 10-20GHz suitable for the nondestructive inspection of the walls of wooden houses. The measurement range of the radar is limited to 0-240mm, shorter than the antenna array length 480mm. This radar system allows acquiring 3D imaging data with a single scan. Using synthetic aperture radar processing, the structural health of braces inside the walls of wooden houses can be evaluated from the obtained 3D volume images. Based on experiment results, we confirmed that the proposed calibration method significantly improves the subsurface 3D imaging quality. Low intensity ghost images behind the brace target were suppressed, deformations of the target in the volume image were rectified and errors the range distance were corrected.

  • Regular Expression Filtering on Multiple q-Grams

    Seon-Ho SHIN  HyunBong KIM  MyungKeun YOON  

     
    LETTER-Information Network

      Pubricized:
    2017/10/11
      Vol:
    E101-D No:1
      Page(s):
    253-256

    Regular expression matching is essential in network and big-data applications; however, it still has a serious performance bottleneck. The state-of-the-art schemes use a multi-pattern exact string-matching algorithm as a filtering module placed before a heavy regular expression engine. We design a new approximate string-matching filter using multiple q-grams; this filter not only achieves better space compactness, but it also has higher throughput than the existing filters.

  • A 100-MHz 51.2-Gb/s Packet Lookup Engine with Automatic Table Update Function

    Kousuke IMAMURA  Ryota HONDA  Yoshifumi KAWAMURA  Naoki MIURA  Masami URANO  Satoshi SHIGEMATSU  Tetsuya MATSUMURA  Yoshio MATSUDA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E100-A No:10
      Page(s):
    2123-2134

    The development of an extremely efficient packet inspection algorithm for lookup engines is important in order to realize high throughput and to lower energy dissipation. In this paper, we propose a new lookup engine based on a combination of a mismatch detection circuit and a linked-list hash table. The engine has an automatic rule registration and deletion function; the results are that it is only necessary to input rules, and the various tables included in the circuits, such as the Mismatch Table, Index Table, and Rule Table, will be automatically configured using the embedded hardware. This function utilizes a match/mismatch assessment for normal packet inspection operations. An experimental chip was fabricated using 40-nm 8-metal CMOS process technology. The chip operates at a frequency of 100MHz under a power supply voltage of VDD =1.1V. A throughput of 100Mpacket/s (=51.2Gb/s) is obtained at an operating frequency of 100MHz, which is three times greater than the throughput of 33Mpacket/s obtained with a conventional lookup engine without a mismatch detection circuit. The measured energy dissipation was a 1.58pJ/b·Search.

  • Development of Multistatic Linear Array Radar at 10-20GHz

    Yasunari MORI  Takayoshi YUMII  Yumi ASANO  Kyouji DOI  Christian N. KOYAMA  Yasushi IITSUKA  Kazunori TAKAHASHI  Motoyuki SATO  

     
    PAPER

      Vol:
    E100-C No:1
      Page(s):
    60-67

    This paper presents a prototype of a 3D imaging step-frequency radar system at 10-20GHz suitable for the nondestructive inspection of the walls of wooden houses. Using this prototype, it is possible to obtain data for 3D imaging with a single simple scan and make 3D volume images of braces — broken or not — in the walls of wooden houses using synthetic aperture radar processing. The system is a multistatic radar composed of a one-dimensional array antenna (32 transmitting and 32 receiving antennas, which are resistively loaded printed bowtie antennas) and is able to acquire frequency domain data for all the transmitting and receiving antenna pairs, i.e., 32×32=1024 pairs, in 33ms per position. On the basis of comparisons between two array antenna prototype designs, we investigated the optimal distance between a transmitting array and a receiving array to reduce the direct coupling effect. We produced a prototype multistatic radar system and used it to measure different types of wooden targets in two experiments. In the first experiment, we measured plywood bars behind a decorated gypsum board, simulating a broken wooden brace inside a house wall. In the second experiment, we measured a wooden brace made of Japanese cypress as a target inside a model of a typical (wooden) Japanese house wall. The results of both experiments demonstrate the imaging capability of the radar prototype for nondestructive inspection of the insides of wooden house walls.

  • Combining Fisher Criterion and Deep Learning for Patterned Fabric Defect Inspection

    Yundong LI  Jiyue ZHANG  Yubing LIN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/08/08
      Vol:
    E99-D No:11
      Page(s):
    2840-2842

    In this letter, we propose a novel discriminative representation for patterned fabric defect inspection when only limited negative samples are available. Fisher criterion is introduced into the loss function of deep learning, which can guide the learning direction of deep networks and make the extracted features more discriminating. A deep neural network constructed from the encoder part of trained autoencoders is utilized to classify each pixel in the images into defective or defectless categories, using as context a patch centered on the pixel. Sequentially the confidence map is processed by median filtering and binary thresholding, and then the defect areas are located. Experimental results demonstrate that our method achieves state-of-the-art performance on the benchmark fabric images.

  • Measurement of Wireless LAN Characteristics in Sewer Pipes for Sewer Inspection Systems Using Drifting Wireless Sensor Nodes

    Taiki NAGASHIMA  Yudai TANAKA  Susumu ISHIHARA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1989-1997

    Deterioration of sewer pipes is one of very important problems in Japan. Sewer inspections have been carried out mainly by visual check or wired remote robots with a camera. However, such inspection schemes involve high labor and/or monetary cost. Sewer inspection with boat-type video cameras or unwired robots takes a long time to check the result of the inspection because video data are obtained after the equipment is retrieved from the pipe. To realize low cost, safe and quick inspection of sewer pipes, we have proposed a sewer inspection system using drifting wireless sensor nodes. Water, soil, and the narrow space in the pipe make the long-range and high throughput wireless radio communication difficult. Therefore, we have to identify suitable radio frequency and antenna configuration based on wireless communication characteristics in sewer pipes. If the frequency is higher, the Fresnel zone, the needed space for the line of sight is small, but the path loss in free space is large. On the other hand, if the frequency is lower, the size of the Fresnel zone is large, but the path loss in free space is small. We conducted wireless communication experiments using 920MHz, 2.4GHz, and 5GHz band off-the-shelf devices in an experimental underground pipe. The measurement results show that the wireless communication range of 5GHz (IEEE 802.11a) is over 8m in a 200mm-diameter pipe and is longer than 920MHz (ARIB STD-T108), 2.4GHz (IEEE 802.11g, IEEE 802.15.4) band at their maximum transmission power. In addition, we confirmed that devices that use IEEE 802.11a and 54Mbps bit rate can transmit about 43MB data while they are in the communication range of an AP and drift at 1m/s in a 200mm-diameter pipe, and it is bigger than one of devices that use other bit rate.

  • PAC-k: A Parallel Aho-Corasick String Matching Approach on Graphic Processing Units Using Non-Overlapped Threads

    ThienLuan HO  Seung-Rohk OH  HyunJin KIM  

     
    PAPER-Network Management/Operation

      Vol:
    E99-B No:7
      Page(s):
    1523-1531

    A parallel Aho-Corasick (AC) approach, named PAC-k, is proposed for string matching in deep packet inspection (DPI). The proposed approach adopts graphic processing units (GPUs) to perform the string matching in parallel for high throughput. In parallel string matching, the boundary detection problem happens when a pattern is matched across chunks. The PAC-k approach solves the boundary detection problem because the number of characters to be scanned by a thread can reach the longest pattern length. An input string is divided into multiple sub-chunks with k characters. By adopting the new starting position in each sub-chunk for the failure transition, the required number of threads is reduced by a factor of k. Therefore, the overhead of terminating and reassigning threads is also decreased. In order to avoid the unnecessary overlapped scanning with multiple threads, a checking procedure is proposed that decides whether a new starting position is in the sub-chunk. In the experiments with target patterns from Snort and realistic input strings from DEFCON, throughputs are enhanced greatly compared to those of previous AC-based string matching approaches.

  • Accurate Permittivity Estimation Method for 3-Dimensional Dielectric Object with FDTD-Based Waveform Correction

    Ryunosuke SOUMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E97-C No:2
      Page(s):
    123-127

    Ultra-wideband pulse radar exhibits high range resolution, and excellent capability in penetrating dielectric media. With that, it has great potential as an innovative non-destructive inspection technique for objects such as human body or concrete walls. For suitability in such applications, we have already proposed an accurate permittivity estimation method for a 2-dimensional dielectric object of arbitrarily shape and clear boundary. In this method, the propagation path estimation inside the dielectric object is calculated, based on the geometrical optics (GO) approximation, where the dielectric boundary points and its normal vectors are directly reproduced by the range point migration (RPM) method. In addition, to compensate for the estimation error incurred using the GO approximation, a waveform compensation scheme employing the finite-difference time domain (FDTD) method was incorporated, where an initial guess of the relative permittivity and dielectric boundary are employed for data regeneration. This study introduces the 3-dimensional extension of the above permittivity estimation method, aimed at practical uses, where only the transmissive data are effectively extracted, based on quantitative criteria that considers the spatial relationship between antenna locations and the dielectric object position. Results from a numerical simulation verify that our proposed method accomplishes accurate permittivity estimations even for 3-dimensional dielectric medium of wavelength size.

  • Acceleration of Deep Packet Inspection Using a Multi-Byte Processing Prefilter

    Hyejeong HONG  Sungho KANG  

     
    LETTER-Internet

      Vol:
    E96-B No:2
      Page(s):
    643-646

    Fast string matching is essential for deep packet inspection (DPI). Traditional string matchers cannot keep up with the continuous increases in data rates due to their natural speed limits. We add a multi-byte processing prefilter to the traditional string matcher to detect target patterns on a multiple character basis. The proposed winnowing prefilter significantly reduces the number of identity blocks, thereby reducing the memory requirements.

  • A Memory-Efficient Bit-Split Pattern Matching Architecture Using Shared Match Vectors for Deep Packet Inspection

    HyunJin KIM  

     
    LETTER-Network Management/Operation

      Vol:
    E95-B No:11
      Page(s):
    3594-3596

    This paper proposes a bit-split string matcher architecture for a memory-efficient hardware-based parallel pattern matching engine. In the proposed bit-split string matcher, multiple finite-state machine (FSM) tiles share match vectors to reduce the required number of stored match vectors. By decreasing the memory size for storing match vectors, the total memory requirement can be minimized.

  • Combining Boundary and Region Information with Bolt Prior for Rail Surface Detection

    Yaping HUANG  Siwei LUO  Shengchun WANG  

     
    LETTER-Pattern Recognition

      Vol:
    E95-D No:2
      Page(s):
    690-693

    Railway inspection is important in railway maintenance. There are several tasks in railway inspection, e.g., defect detection and bolt detection. For those inspection tasks, the detection of rail surface is a fundamental and key issue. In order to detect rail defects and missing bolts, one must know the exact location of the rail surface. To deal with this problem, we propose an efficient Rail Surface Detection (RSD) algorithm that combines boundary and region information in a uniform formulation. Moreover, we reevaluate the rail location by introducing the top down information–bolt location prior. The experimental results show that the proposed algorithm can detect the rail surface efficiently.

  • Parallel DFA Architecture for Ultra High Throughput DFA-Based Pattern Matching

    Yi TANG  Junchen JIANG  Xiaofei WANG  Chengchen HU  Bin LIU  Zhijia CHEN  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3232-3242

    Multi-pattern matching is a key technique for implementing network security applications such as Network Intrusion Detection/Protection Systems (NIDS/NIPSes) where every packet is inspected against tens of thousands of predefined attack signatures written in regular expressions (regexes). To this end, Deterministic Finite Automaton (DFA) is widely used for multi-regex matching, but existing DFA-based researches have claimed high throughput at an expense of extremely high memory cost, so fail to be employed in devices such as high-speed routers and embedded systems where the available memory is quite limited. In this paper, we propose a parallel architecture of DFA called Parallel DFA (PDFA) taking advantage of the large amount of concurrent flows to increase the throughput with nearly no extra memory cost. The basic idea is to selectively store the underlying DFA in memory modules that can be accessed in parallel. To explore its potential parallelism we intensively study DFA-split schemes from both state and transition points in this paper. The performance of our approach in both the average cases and the worst cases is analyzed, optimized and evaluated by numerical results. The evaluation shows that we obtain an average speedup of 100 times compared with traditional DFA-based matching approach.

  • A Hardware-Efficient Pattern Matching Architecture Using Process Element Tree for Deep Packet Inspection

    Seongyong AHN  Hyejeong HONG  HyunJin KIM  Jin-Ho AHN  Dongmyong BAEK  Sungho KANG  

     
    LETTER-Network Management/Operation

      Vol:
    E93-B No:9
      Page(s):
    2440-2442

    This paper proposes a new pattern matching architecture with multi-character processing for deep packet inspection. The proposed pattern matching architecture detects the start point of pattern matching from multi-character input using input text alignment. By eliminating duplicate hardware components using process element tree, hardware cost is greatly reduced in the proposed pattern matching architecture.

1-20hit(55hit)