The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] integrity(79hit)

21-40hit(79hit)

  • VAWS: Constructing Trusted Open Computing System of MapReduce with Verified Participants Open Access

    Yan DING  Huaimin WANG  Lifeng WEI  Songzheng CHEN  Hongyi FU  Xinhai XU  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    721-732

    MapReduce is commonly used as a parallel massive data processing model. When deploying it as a service over the open systems, the computational integrity of the participants is becoming an important issue due to the untrustworthy workers. Current duplication-based solutions can effectively solve non-collusive attacks, yet most of them require a centralized worker to re-compute additional sampled tasks to defend collusive attacks, which makes the worker a bottleneck. In this paper, we try to explore a trusted worker scheduling framework, named VAWS, to detect collusive attackers and assure the integrity of data processing without extra re-computation. Based on the historical results of verification, we construct an Integrity Attestation Graph (IAG) in VAWS to identify malicious mappers and remove them from the framework. To further improve the efficiency of identification, a verification-couple selection method with the IAG guidance is introduced to detect the potential accomplices of the confirmed malicious worker. We have proven the effectiveness of our proposed method on the improvement of system performance in theoretical analysis. Intensive experiments show the accuracy of VAWS is over 97% and the overhead of computation is closed to the ideal value of 2 with the increasing of the number of map tasks in our scheme.

  • Cryptanalysis of Remote Data Integrity Checking Protocol Proposed by L. Chen for Cloud Storage

    Shaojing FU  Dongsheng WANG  Ming XU  Jiangchun REN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:1
      Page(s):
    418-420

    Remote data possession checking for cloud storage is very important, since data owners can check the integrity of outsourced data without downloading a copy to their local computers. In a previous work, Chen proposed a remote data possession checking protocol using algebraic signature and showed that it can resist against various known attacks. In this paper, we find serious security flaws in Chen's protocol, and shows that it is vulnerable to replay attack by a malicious cloud server. Finally, we propose an improved version of the protocol to guarantee secure data storage for data owners.

  • Equivalent Circuit Representation of Silicon Substrate Coupling of Passive and Active RF Components

    Naoya AZUMA  Makoto NAGATA  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    875-883

    Substrate coupling of radio frequency (RF) components is represented by equivalent circuits unifying a resistive mesh network with lumped capacitors in connection with the backside of device models. Two-port S-parameter test structures are used to characterize the strength of substrate coupling of resistors, capacitors, inductors, and MOSFETs in a 65 nm CMOS technology with different geometries and dimensions. The consistency is finely demonstrated between simulation with the equivalent circuits and measurements of the test structures, with the deviation of typically less than 3 dB for passive and 6 dB for active components, in the transmission properties for the frequency range of interest up to 8 GHz.

  • Design of Effective Supply Voltage Monitor for Measuring Power Rails of Integrated Circuits

    Takeshi OKUMOTO  Kumpei YOSHIKAWA  Makoto NAGATA  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    538-545

    An effective supply voltage monitor evaluates dynamic variation of (Vdd-Vss) within power rails of integrated circuits on a die. The monitor occupies an area of as small as 10.8 14.5 µm2 and is followed by backend digitizing circuits, both using 3.3 V thick oxide transistors in a 65 nm CMOS technology for covering all power domains from core circuits to peripheral I/O rings. A prototype demonstrates capturing of effective supply voltage waveforms in digital (shift registers) as well as in analog (4 bit Flash ADC) circuits.

  • Application-Oriented Confidentiality and Integrity Dynamic Union Security Model Based on MLS Policy

    Mingfu XUE  Aiqun HU  Chunlong HE  

     
    LETTER-Dependable Computing

      Vol:
    E95-D No:6
      Page(s):
    1694-1697

    We propose a new security model based on MLS Policy to achieve a better security performance on confidentiality, integrity and availability. First, it realizes a combination of BLP model and Biba model through a two-dimensional independent adjustment of integrity and confidentiality. And, the subject's access range is adjusted dynamically according to the security label of related objects and the subject's access history. Second, the security level of the trusted subject is extended to writing and reading privilege range respectively, following the principle of least privilege. Third, it adjusts the objects' security levels after adding confidential information to prevent the information disclosure. Fourth, it uses application-oriented logic to protect specific applications to avoid the degradation of security levels. Thus, it can ensure certain applications operate smoothly. Lastly, examples are presented to show the effectiveness and usability of the proposed model.

  • Modeling and Analysis of Substrate Noise Coupling in Analog and RF ICs

    Makoto NAGATA  

     
    INVITED PAPER

      Vol:
    E95-A No:2
      Page(s):
    430-438

    Substrate noise coupling has been seriously concerned in the design of advanced analog and radio frequency (RF) integrated circuits (ICs). This paper reviews recent advancements in the modeling, analysis, and evaluation of substrate noise coupling at IC chip level. Noise generation from digital circuits and propagation to the area of analog circuits are clearly visualized both by full-chip simulation as well as by on-chip measurements, for silicon test vehicles. The impacts of substrate noise coupling are also in-depth discussed at device, circuit, as well as system levels. Overall understanding of substrate noise coupling will then provide the basics for highly reliable design of analog and RF ICs.

  • Improving Data Confidentiality and Integrity for Data Aggregation in Wireless Sensor Networks

    Rabindra BISTA  Yong-Ki KIM  Myoung-Seon SONG  Jae-Woo CHANG  

     
    PAPER-Trust

      Vol:
    E95-D No:1
      Page(s):
    67-77

    Since wireless sensor networks (WSNs) are resources-constrained, it is very essential to gather data efficiently from the WSNs so that their life can be prolonged. Data aggregation can conserve a significant amount of energy by minimizing transmission cost in terms of the number of data packets. Many applications require privacy and integrity protection of the sampled data while they travel from the source sensor nodes to a data collecting device, say a query server. However, the existing schemes suffer from high communication cost, high computation cost and data propagation delay. To resolve the problems, in this paper, we propose a new and efficient integrity protecting sensitive data aggregation scheme for WSNs. Our scheme makes use of the additive property of complex numbers to achieve sensitive data aggregation with protecting data integrity. With simulation results, we show that our scheme is much more efficient in terms of both communication and computation overheads, integrity checking and data propagation delay than the existing schemes for protecting integrity and privacy preserving data aggregation in WSNs.

  • Conflict-Based Checking the Integrity of Linux Package Dependencies

    Yuqing LAN  Mingxia KUANG  Wenbin ZHOU  

     
    PAPER-Software Engineering

      Vol:
    E94-D No:12
      Page(s):
    2431-2439

    A Linux operating system release is composed of a large number of software packages, with complex dependencies. The management of dependency relationship is the foundation of building and maintaining a Linux operating system release, and checking the integrity of the dependencies is the key of the dependency management. The widespread adoption of Linux operating systems in many areas of the information technology society has drawn the attention on the issues regarding how to check the integrity of complexity dependencies of Linux packages and how to manage a huge number of packages in a consistent and effective way. Linux distributions have already provided the tools for managing the tasks of installing, removing and upgrading the packages they were made of. A number of tools have been provided to handle these tasks on the client side. However, there is a lack of tools that could help the distribution editors to maintain the integrity of Linux package dependencies on the server side. In this paper we present a method based on conflict to check the integrity of Linux package dependencies. From the perspective of conflict, this method achieves the goal to check the integrity of package dependencies on the server side by removing the conflict associating with the packages. Our contribution provides an effective and automatic way to support distribution editors in handling those issues. Experiments using this method are very successful in checking the integrity of package dependencies in Linux software distributions.

  • Greedy Algorithm for the On-Chip Decoupling Capacitance Optimization to Satisfy the Voltage Drop Constraint

    Mikiko SODE TANAKA  Nozomu TOGAWA  Masao YANAGISAWA  Satoshi GOTO  

     
    PAPER-Physical Level Design

      Vol:
    E94-A No:12
      Page(s):
    2482-2489

    With the progress of process technology in recent years, low voltage power supplies have become quite predominant. With this, the voltage margin has decreased and therefore the on-chip decoupling capacitance optimization that satisfies the voltage drop constraint becomes more important. In addition, the reduction of the on-chip decoupling capacitance area will reduce the chip area and, therefore, manufacturing costs. Hence, we propose an algorithm that satisfies the voltage drop constraint and at the same time, minimizes the total on-chip decoupling capacitance area. The proposed algorithm uses the idea of the network algorithm where the path which has the most influence on voltage drop is found. Voltage drop is improved by adding the on-chip capacitance to the node on the path. The proposed algorithm is efficient and effectively adds the on-chip capacitance to the greatest influence on the voltage drop. Experimental results demonstrate that, with the proposed algorithm, real size power/ground network could be optimized in just a few minutes which are quite practical. Compared with the conventional algorithm, we confirmed that the total on-chip decoupling capacitance area of the power/ground network was reducible by about 4050%.

  • Efficient and Secure Aggregation of Sensor Data against Multiple Corrupted Nodes

    Atsuko MIYAJI  Kazumasa OMOTE  

     
    PAPER-Information Network

      Vol:
    E94-D No:10
      Page(s):
    1955-1965

    Wireless Sensor Networks (WSNs) rely on in-network aggregation for efficiency, that is, readings from sensor nodes are aggregated at intermediate nodes to reduce the communication cost. However, the previous optimally secure in-network aggregation protocols against multiple corrupted nodes require two round-trip communications between each node and the base station, including the result-checking phase whose congestion is O(log n) where n is the total number of sensor nodes. In this paper, we propose an efficient and optimally secure sensor network aggregation protocol against multiple corrupted nodes by a random-walk adversary. Our protocol achieves one round-trip communication to satisfy optimal security without the result-checking phase, by conducting aggregation along with the verification, based on the idea of TESLA technique. Furthermore, we show that the congestion complexity, communication complexity and computational cost in our protocol are constant, i.e., O(1).

  • Greedy Optimization Algorithm for the Power/Ground Network Design to Satisfy the Voltage Drop Constraint

    Mikiko SODE TANAKA  Nozomu TOGAWA  Masao YANAGISAWA  Satoshi GOTO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:4
      Page(s):
    1082-1090

    With the process technological progress in recent years, low voltage power supplies have become quite predominant. With this, the voltage margin has decreased and therefore the power/ground design that satisfies the voltage drop constraint becomes more important. In addition, the reduction of the power/ground total wiring area and the number of layers will reduce manufacturing and designing costs. So, we propose an algorithm that satisfies the voltage drop constraint and at the same time, minimizes the power/ground total wiring area. The proposed algorithm uses the idea of a network algorithm [1] where the edge which has the most influence on voltage drop is found. Voltage drop is improved by changing the resistance of the edge. The proposed algorithm is efficient and effectively updates the edge with the greatest influence on the voltage drop. From experimental results, compared with the conventional algorithm, we confirmed that the total wiring area of the power/ground was reducible by about 1/3. Also, the experimental data shows that the proposed algorithm satisfies the voltage drop constraint in the data whereas the conventional algorithm cannot.

  • Analysis of Microstrip Line with Bends Using Fourier Transform and Mode-Matching Technique

    Hyun Ho PARK  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1731-1738

    In this paper, the transmission and reflection properties of the microstrip line with bends are investigated using the Fourier transform and a mode-matching technique. Based on the waveguide model, the microstrip bends are modeled as the rectangular waveguides with perfect electric conducting top and bottom walls and perfect magnetic conducting side walls. Analytical closed-form expressions for transmission and reflection coefficients are developed using the residue calculus. To verify the proposed method, numerical computations are performed for comparison with 3D full-wave simulations and measurements. A quarter-wavelength transmission line scheme is also proposed to improve the signal integrity of double bend discontinuity.

  • An Arbitrary Digital Power Noise Generator Using 65 nm CMOS Technology

    Tetsuro MATSUNO  Daisuke FUJIMOTO  Daisuke KOSAKA  Naoyuki HAMANISHI  Ken TANABE  Masazumi SHIOCHI  Makoto NAGATA  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    820-826

    An arbitrary noise generator (ANG) is based on time-series charging of divided parasitic capacitance (TSDPC) and emulates power supply noise generation in a CMOS digital circuit. A prototype ANG incorporates an array of 32 x 32 6-bit TSDPC cells along with a 128-word vector memory and occupies 2 x 2 mm2 in a 65 nm 1.2 V CMOS technology. Digital noise emulation of functional logic cores such as register arrays is demonstrated with chip-level waveform monitoring at power supply, ground, as well as substrate nodes.

  • Chip-to-Chip Half Duplex Spiking Data Communication over Power Supply Rails

    Takushi HASHIDA  Makoto NAGATA  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    842-848

    Chip-to-chip serial data communication is superposed on power supply over common Vdd/Vss connections through chip, package, and board traces. A power line transceiver demonstrates half duplex spiking communication at more than 100 Mbps. A pair of transceivers consumes 1.35 mA from 3.3 V, at 130 Mbps. On-chip power line LC low pass filter attenuates pseudo-differential communication spikes by 30 dB, purifying power supply current for internal circuits. Bi-directional spiking communication was successfully examined in a 90-nm CMOS prototype setup of on-chip waveform capturing. A micro controller forwards clock pulses to and receives data streams from a comparator based waveform capturer formed on a different chip, through a single pair of power and ground traces. The bit error rate is small enough not to degrade waveform acquisition capability, maintaining the spurious free dynamic range of higher than 50 dB.

  • DIRECT: Dynamic Key Renewal Using Secure Cluster Head Election in Wireless Sensor Networks

    Gicheol WANG  Kang-Suk SONG  Gihwan CHO  

     
    PAPER-Information Network

      Vol:
    E93-D No:6
      Page(s):
    1560-1571

    In modern sensor networks, key management is essential to transmit data from sensors to the sink securely. That is, sensors are likely to be compromised by attackers, and a key management scheme should renew the keys for communication as frequently as possible. In clustered sensor networks, CHs (Cluster Heads) tend to become targets of compromise attack because they collect data from sensors and deliver the aggregated data to the sink. However, existing key renewal schemes do not change the CH role nodes, and thus they are vulnerable to the compromise of CHs. Our scheme is called DIRECT (DynamIc key REnewal using Cluster head elecTion) because it materializes the dynamic key renewals through secure CH elections. In the scheme, the network is divided into sectors to separate CH elections in each sector from other sectors. Then, sensors establish pairwise keys with other sensors in their sector for intra-sector communication. Every CH election round, all sensors securely elect a CH in their sector by defeating the malicious actions of attackers. Therefore, the probability that a compromised node is elected as a CH decreases significantly. The simulation results show that our approach significantly improves the integrity of data, energy efficiency, and network longevity.

  • Compact CAD Models for the Signal Integrity Verification of Multi-Coupled Transmission Lines

    Hyunsik KIM  Yungseon EO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:4
      Page(s):
    752-760

    A novel modal signal decoupling algorithm for multi-coupled transmission lines is developed. Since the proposed method exploits a set of basis vectors associated with the characteristic impedances of the transmission line system, these multi-coupled signals can be efficiently decoupled regardless of dielectric media and conductors. Thus, compact forms of the signal integrity verification CAD models for multi-coupled transmission lines can be readily determined. It is shown that the analytical models are in excellent agreement with those obtained with SPICE simulation and its computation time is much faster than the conventional macro model (W-model) in the order of two.

  • A Time-Slicing Ring Oscillator for Capturing Time-Dependent Delay Degradation and Power Supply Voltage Fluctuation

    Takumi UEZONO  Kazuya MASU  Takashi SATO  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    324-331

    A time-slicing ring oscillator (TSRO) which captures time-dependent delay degradation due to periodic transient voltage drop on a power supply network is proposed. An impact of the supply voltage fluctuations, including voltage drop and overshoot, on logic circuit delay is evaluated as a change of oscillation frequency. The TSRO is designed using standard logic cells so that it can be placed almost anywhere in a digital circuit wherein supply voltage fluctuation is concerned. We also propose a new procedure for reconstructing supply voltage waveform. The procedure enables us to accurately monitor time-dependent, effective supply voltages. The -1 dB bandwidth of the TSRO is simulated to be 15.7 GHz, and measured time resolution is 131 ps. Measurement results of a test chip using 90-nm standard CMOS process successfully proved the feasibility of both delay degradation and effective supply voltage fluctuation measurements. Measurement of spatial voltage drop fluctuation is achieved.

  • Generating Stable and Sparse Reluctance/Inductance Matrix under Insufficient Discretization

    Yuichi TANJI  Takayuki WATANABE  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    379-387

    This paper presents generating stable and sparse reluctance/inductance matrix from the inductance matrix which is extracted under insufficient discretization. To generate the sparse reluctance matrix with guaranteed stability, the original matrix has to be (strictly) diagonally dominant M matrix. Hence, the repeated inductance extractions with a smaller grid size are necessary in order to obtain the well-defined matrix. Alternatively, this paper provides some ideas for generating the sparse reluctance matrix, even if the extracted reluctance matrix is not diagonally dominant M matrix. These ease the extraction tasks greatly. Furthermore, the sparse inductance matrix is also generated by using double inverse methods. Since reluctance components are not still supported in SPICE-like simulators, generating the sparse inductance matrix is more useful than the sparse reluctance one.

  • Modeling of Power Noise Generation in Standard-Cell Based CMOS Digital Circuits

    Tetsuro MATSUNO  Daisuke KOSAKA  Makoto NAGATA  

     
    PAPER

      Vol:
    E93-A No:2
      Page(s):
    440-447

    Capacitance charging modeling efficiently captures power supply currents in dynamic operations of a CMOS digital circuit and accurately expresses their interaction with on- and off-chip impedance networks. Derivation of such models is generally defined for combinational and sequential logic functions. Simulated substrate and power noises due to sequential logic operation show clear dependency on the size of circuits as well as the internal activity of logic gates. Furthermore, it is experimentally found that the inclusion of impedance networks of a silicon substrate, a package, and an evaluation board, is substantially effective to improve the accuracy of noise analysis. Quantitative correlation among simulation with on-chip noise measurements is demonstrated in a 90-nm 1.2-V CMOS technology.

  • Partial Placement of EBG on Both Power and Ground Planes for Broadband Suppression of Simultaneous Switching Noise

    Jong Hwa KWON  Jong Gwan YOOK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:7
      Page(s):
    2550-2553

    In this paper, a novel method of partially placing electromagnetic band-gap (EBG) unit cells on both the power and ground planes in multi-layer PCBs and packages is proposed; it can not only sufficiently eliminate simultaneous switching noise (SSN), but also prevent severe degradation of signal quality in high-speed systems with imperfect reference planes resulting from the perforated structures of uni-planar EBG unit cells. On the assumption that the noise sources and noise-sensitive devices exist only in specific areas, the proposed method partially arranges the EBG unit cells on both the power and ground planes, but only around the critical areas. The SSN suppression performance of the proposed structure is verified by a simulation and measurements.

21-40hit(79hit)