The search functionality is under construction.

Keyword Search Result

[Keyword] inter-cell interference(40hit)

1-20hit(40hit)

  • Construction of Fixed Rate Non-Binary WOM Codes Based on Integer Programming

    Yoju FUJINO  Tadashi WADAYAMA  

     
    PAPER-Coding Theory for Strage

      Vol:
    E100-A No:12
      Page(s):
    2654-2661

    In this paper, we propose a construction of non-binary WOM (Write-Once-Memory) codes for WOM storages such as flash memories. The WOM codes discussed in this paper are fixed rate WOM codes where messages in a fixed alphabet of size M can be sequentially written in the WOM storage at least t*-times. In this paper, a WOM storage is modeled by a state transition graph. The proposed construction has the following two features. First, it includes a systematic method to determine the encoding regions in the state transition graph. Second, the proposed construction includes a labeling method for states by using integer programming. Several novel WOM codes for q level flash memories with 2 cells are constructed by the proposed construction. They achieve the worst numbers of writes t* that meet the known upper bound in the range 4≤q≤8, M=8. In addition, we constructed fixed rate non-binary WOM codes with the capability to reduce ICI (inter cell interference) of flash cells. One of the advantages of the proposed construction is its flexibility. It can be applied to various storage devices, to various dimensions (i.e, number of cells), and various kind of additional constraints.

  • Joint Optimization of User Association and Inter-Cell Interference Coordination for Proportional Fair-Based System Throughput Maximization in Heterogeneous Cellular Networks

    Yoshitaka IKEDA  Shozo OKASAKA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1334-1342

    This paper proposes a proportional fair-based joint optimization method for user association and the bandwidth ratio of protected radio resources exclusively used by pico base stations (BSs) for inter-cell interference coordination (ICIC) in heterogeneous networks where low transmission-power pico BSs overlay a high transmission-power macro BS. The proposed method employs an iterative algorithm, in which the user association process for a given bandwidth ratio of protected radio resources and the bandwidth ratio control of protected radio resources for a given user association are applied alternately and repeatedly up to convergence. For user association, we use our previously reported decentralized iterative user association method based on the feedback information of each individual user assisted by a small amount of broadcast information from the respective BSs. Based on numerical results, we show that the proposed method adaptively achieves optimal user association and bandwidth ratio control of protected radio resources, which maximizes the geometric mean user throughput within the macrocell coverage area. The system throughput of the proposed method is compared to that for conventional approaches to show the performance gain.

  • A Study on Adaptive Scheduling Priority Control for Layered Cell Configuration

    Atsushi NAGATE  Teruya FUJII  Masayuki MURATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/09/15
      Vol:
    E100-B No:2
      Page(s):
    372-379

    The layered cell configuration, in which a large number of small cells are set in a macro-cell coverage area, is attracting much attention recently as a promising approach to handle the rapidly increasing mobile data traffic. In this configuration, cells of various sizes, from macro to small, are placed in various locations, so that the variation in the number and the distribution of the users among cells becomes much wider than in conventional macro-cell homogeneous networks. Therefore, even in the layered cell configuration, the users in the cell with many users and low received signal quality may experience low throughput especially at cell edge. This is because such users experience both low spectral efficiency and few radio resources. In order to resolve this issue, a lot of techniques have been proposed such as load balancing and cooperative multi-point transmission. In this paper, we focus on scheduling priority control as a simple solution that can also be used in combination with load balancing and coordinated multi-point transmission. We propose an adaptive scheduling priority control scheme based on the congestion and user distribution of each cell and clarify the effect of the proposed method by computer simulations.

  • Inter-Cell Interference Coordination Method Based on Coordinated Inter-Cell Interference Power Control in Uplink

    Kenichi HIGUCHI  Yoshiko SAITO  Seigo NAKAO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:7
      Page(s):
    1357-1362

    We propose an inter-cell interference coordination (ICIC) method that employs inter-cell coordinated transmission power control (TPC) based on inter-cell interference power in addition to conventional received signal power-based TPC in the cellular uplink. We assume orthogonal multiple-access as is used in 3GPP LTE. In the proposed method, an ICIC effect similar to that for conventional fractional frequency reuse (FFR) is obtained. This is achieved by coordinating the allowable inter-cell interference power level at the appropriate frequency blocks within the system bandwidth among neighboring cells in a semi-static manner. Different from conventional FFR, since all users within a cell can access all the frequency blocks, the reduction in multiuser diversity gain is abated. Computer simulation results show that the proposed method enhances both the cell-edge and average user throughput simultaneously compared to conventional universal frequency reuse (UFR) and FFR.

  • Centralized Inter-Cell Interference Coordination Using Multi-Band 3D Beam-Switching in Cellular Networks

    Hiroyuki SEKI  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:7
      Page(s):
    1363-1372

    The deployment of small cells is one of the most effective means to cope with the traffic explosion of cellular mobile systems. However, a small cell system increases the inter-cell interference, which limits the capacity and degrades the cell-edge user throughput. Inter-cell interference coordination (ICIC), such as fractional frequency reuse (FFR), is a well-known scheme that autonomously mitigates inter-cell interference. In the Long Term Evolution (LTE)-Advanced, the three-dimensional (3D) beamforming, which combines conventional horizontal beamforming and vertical beamforming, has been gaining increasing attention. This paper proposes a novel centralized ICIC scheme that controls the direction of narrow 3D beam for each frequency band of each base station. The centralized controller collects information from the base stations and calculates sub-optimum combinations of narrow beams so as to maximize the proportional fair (PF) utility of all users. This paper describes the throughput of the new centralized ICIC scheme as evaluated by computer simulations and shows it has a significant gain in both average user throughput and cell-edge user throughput compared with the conventional ICIC scheme. This paper also investigates the feasibility of the scheme by assessing its throughput performance in a realistic deployment scenario.

  • Cell-Specific Association for Heterogeneous Networks with Interference Control

    Yinghong WEN  Yuan CAO  Wei XU  Hideo NAKAMURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:4
      Page(s):
    653-660

    This paper focuses on system level simulation of heterogeneous networks (HetNet). Aiming at the imbalance offloading of macro cell and pico cell under the macro-pico coexistence case, we propose an adaptive cell-specific association strategy for HetNet to ensure that users can be served equitably by both macro cell and pico cell. The traditional cell range expansion (CRE) scheme with bias-based cell association has fixed bias values for all pico cells. Our proposal, on the other hand, sets different thresholds of attached users for all MeNB (macro enhanced node B) and PeNBs (pico enhanced node B), and all cell-specific biases are obtained by the proposed adaptive association strategy according to different cell-specific predefined thresholds. With this strategy, the load imbalance between MeNB and different PeNBs is well alleviated, and hence the entire network performance is elevated. Moreover, due to the newly deployed low-power nodes in HetNets, the achieved spectral efficiency of users, especially for cell edge users, is also affected by the downlink inter-cell interference. The idea we put forward is to combine the frequency and power coordination, and so suppress the inter-cell interference. Finally in this paper, we present some numerical results to verify the effectiveness of our proposed approach.

  • Sum-Rate Analysis for Centralized and Distributed Antenna Systems with Spatial Correlation and Inter-Cell Interference

    Ou ZHAO  Hidekazu MURATA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    449-455

    In order to verify the channel sum-rate improvement by multi-user multiple-input multiple-output (MU-MIMO) transmission in distributed antenna systems (DASs), we investigate and compare the characteristics of channel sum-rates in both centralized antenna systems (CASs) and DASs under the effects of path loss, spatially correlated shadowing, correlated multi-path fading, and inter-cell interference. In this paper, we introduce two different types of functions to model the shadowing, auto-correlation and cross-correlation, and a typical exponential decay function to model the multi-path fading correlation. Thus, we obtain the distribution of the channel sum-rate and investigate its characteristics. Computer simulation results indicate that DAS can improve the performance of the channel sum-rate compared to CAS, even in the case under consideration. However, this improvement decreases as interference power increases. Moreover, the decrease in the channel sum-rate due to the increase in the interference power becomes slow under the effect of shadowing correlation. In addition, some other analyses on the shadowing correlation that occurs on both the transmit and receiver sides are provided. These analysis results show that the average channel sum-rate in a DAS without inter-cell interference considerably decreases because of the shadowing correlation. In contrast, there appears to be no change in the CAS. Furthermore, there are two different types of sum-rate changes in a DAS because of the difference in shadowing auto-correlation and cross-correlation.

  • Analysis on Effectiveness of Fractional Frequency Reuse for Uplink Using SC-FDMA in Cellular Systems

    Masashi FUSHIKI  Takeo OHSEKI  Satoshi KONISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1457-1466

    Single Carrier — Frequency Domain Multiple Access (SC-FDMA) is a multiple access technique employed in LTE uplink transmission. SC-FDMA can improve system throughput by frequency selective scheduling (FSS). In cellular systems using SC-FDMA in the uplink, interference arising from user equipments (UEs) in neighboring cells degrades the system throughput, especially the throughput of cell-edge UEs. In order to overcome this drawback, many papers have considered fractional frequency reuse (FFR) techniques and analyzed their effectiveness. However, these studies have come to different conclusions regarding the effectiveness of FFR because the throughput gain of FFR depends on the frequency reuse design and evaluation conditions. Previous papers have focused on the frequency reuse design. Few papers have examined the conditions where FFR is effective, and only the UE traffic conditions have been evaluated. This paper reveals other conditions where FFR is effective by demonstrating the throughput gain of FFR. In order to analyze the throughput gain of FFR, we focus on the throughput relationship between FFR and FSS. System level simulation results demonstrate that FFR is effective when the following conditions are met: (i) the number of UEs is small and (ii) the multipath delay spread is large or close to 0.

  • A Unified Self-Optimization Mobility Load Balancing Algorithm for LTE System

    Ying YANG  Wenxiang DONG  Weiqiang LIU  Weidong WANG  

     
    PAPER-Network

      Vol:
    E97-B No:4
      Page(s):
    755-764

    Mobility load balancing (MLB) is a key technology for self-organization networks (SONs). In this paper, we explore the mobility load balancing problem and propose a unified cell specific offset adjusting algorithm (UCSOA) which more accurately adjusts the largely uneven load between neighboring cells and is easily implemented in practice with low computing complexity and signal overhead. Moreover, we evaluate the UCSOA algorithm in two different traffic conditions and prove that the UCSOA algorithm can get the lower call blocking rates and handover failure rates. Furthermore, the interdependency of the proposed UCSOA algorithm's performance and that of the inter-cell interference coordination (ICIC) algorithm is explored. A self-organization soft frequency reuse scheme is proposed. It demonstrates UCSOA algorithm and ICIC algorithm can obtain a positive effect for each other and improve the network performance in LTE system.

  • Implementation and Evaluation of Real-Time Distributed Zero-Forcing Beamforming for Downlink Multi-User MIMO Systems

    Tomoki MURAKAMI  Koichi ISHIHARA  Riichi KUDO  Yusuke ASAI  Takeo ICHIKAWA  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2521-2529

    The implementation and experimental evaluations of distributed zero-forcing beamforming (DZFBF) for downlink multi-user multiple-input multiple-output (DL MU-MIMO) systems are presented. In DZFBF, multiple access points (APs) transmit to own desired stations (STAs) at the same time and using the same frequency channel while mitigating inter-cell interference. To clarify the performance and feasibility of DZFBF, we develop a real-time transmission testbed that includes two APs and four STAs; all are implemented using field programmable gate array. For real-time transmission, we also implement a simple weight generation process based on ZF weight using channel state information which is fed back from STAs; it is an extension of the weight generation approach used in DL MU-MIMO systems. By using our testbed, we demonstrate the real-time transmission performance in actual indoor multi-cell environments. These results indicate that DL DZFBF is more effective than DL MU-MIMO with time division multiple access.

  • Analysis of Cell Range Expansion with TDM ICIC in Heterogeneous Cellular Networks

    Weiqiang LIU  Xiaohui CHEN  Weidong WANG  

     
    PAPER-Network

      Vol:
    E96-B No:7
      Page(s):
    1865-1873

    This work investigates the cell range expansion (CRE) possible with time-domain multiplexing inter-cell interference coordination (TDM ICIC) in heterogeneous cellular networks (HCN). CRE is proposed to enable a user to connect to a picocell even when it is not the cell with the strongest received power. However, the users in the expanded region suffer severe interference from the macrocells. To alleviate the cross-tier interference, TDM ICIC is proposed to improve the SIR of pico users. In contrast to previous studies on CRE with TDM ICIC, which rely mostly on simulations, we give theoretical analysis results for different types of users in HCN with CRE and TDM ICIC under the Poisson Point Process (PPP) model, especially for the users in the expanded region of picocells. We analyze the outage probability and average ergodic rate based on the connect probability and statistical distance we obtain in advance. Furthermore, we analyze the optimal ratio of almost blank subframes (ABS) and bias factor of picocells in terms of the network fairness, which is useful in the parameter design of a two-tier HCN.

  • A Simple Decentralized Cell Association Method for Heterogeneous Networks

    Tetsunosuke KOIZUMI  Kenichi HIGUCHI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1358-1366

    This paper proposes a simple decentralized cell association method for heterogeneous networks, where low transmission-power pico or femto base stations (BSs) overlay onto a high transmission-power macro BS. The focus of this investigation is on the downlink and the purpose of cell association is to achieve better user fairness, in other words, to increase the minimum average user throughput (worst user throughput). In the proposed method, an appropriate cell association for all users within a cell is achieved in an iterative manner based on the feedback information of each individual user assisted by a small amount of broadcast information from the respective BSs. The proposed method does not require cooperation between BSs. Furthermore, the proposed method is applicable to cases of inter-cell interference coordination (ICIC) between macro and pico/femto BSs through the use of protected radio resources exclusively used by the pico/femto BSs. Based on numerical results, we show that the proposed method adaptively achieves better cell association for all users according to the user location distributions compared to the conventional cell range expansion (CRE) method. The advantage of the proposed method over CRE is further enhanced in an ICIC scenario.

  • Performance Evaluation of Interference-Aware Multi-Cell Beamforming for an Overlapping Cells Environment

    Tomoki MURAKAMI  Riichi KUDO  Takeo ICHIKAWA  Naoki HONMA  Masato MIZOGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:6
      Page(s):
    1492-1501

    As wireless LAN systems become more widespread, the number of access points (APs) is increasing. A large number of APs cause overlapping cells where nearby cells utilize the same frequency channel. In the overlapping cells, inter-cell interference (ICI) degrades the throughput. This paper proposes an interference-aware multi-cell beamforming (IMB) technique to reduce the throughput degradation in the overlapping cells. The IMB technique improves transmission performance better than conventional multi-cell beamforming based on a decentralized control scheme. The conventional technique mitigates ICI by nullifying all the interference signal space (ISS) by beamforming, but the signal spaces to the user terminal (UT) is also limited because the degree of freedom (DoF) at the AP is limited. On the other hand, the IMB technique increases the signal space to the UT because the DoF at the AP is increased by selecting the ISS by allowing a small amount of ICI. In addition, we introduce a method of selecting the ISS in a decentralized control scheme. In our work, we analyze the interference channel state information (CSI) and evaluate the transmission performance of the IMB technique by using a measured CSI in an actual indoor environment. As a result, we find that the IMB technique becomes more effective as the number of UT antennas in nearby cells increases.

  • Performance Evaluation of Interference Rejection Combining Receiver in Heterogeneous Networks for LTE-Advanced Downlink

    Yusuke OHWATARI  Akihito MORIMOTO  Nobuhiko MIKI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1265-1276

    The interference rejection combining (IRC) receiver effectively improves the cell-edge user throughput by suppressing interference from the surrounding cells. The work item (WI) for the specification of the IRC receiver is now ongoing for Release 11 Long-Term Evolution (LTE)-Advanced. Furthermore, heterogeneous networks where low power nodes such as picocells are overlaid onto macrocells are important to further improve the system throughput per unit area. In heterogeneous networks, to achieve an offloading gain from macrocells to picocells, cell range expansion (CRE) is applied. Additionally, inter-cell interference coordination (ICIC) is applied to reduce the severe inter-cell interference imposed from the macrocells onto the sets of user equipment (UEs) connected to picocells. In such cases, the interference statistics are completely different from traditional well-planned macrocell deployments, which have been investigated for the IRC receiver. This paper clarifies the effect of the IRC receiver in a heterogeneous network employing CRE and ICIC. Simulation results show that when both CRE and ICIC are applied, the effect of the IRC receiver becomes small due to a reduction in the severe inter-cell interference from ICIC. However, we clarify that the user throughput gain at the cumulative distribution function of 5% from the IRC receiver exceeding 10% is achieved compared to the conventional minimum mean square error (MMSE) receiver in a heterogeneous network regardless of the usage of ICIC. Furthermore, in heterogeneous networks employing CRE and ICIC, we clarify that an average user throughput gain exceeding 5% is achieved from the IRC receiver and the improvement in the average user throughput is high especially for the UEs connected to picocells compared to UEs connected to macrocells.

  • Investigation of Inter-Cell Interference Coordination Applying Transmission Power Reduction in Heterogeneous Networks for LTE-Advanced Downlink

    Akihito MORIMOTO  Nobuhiko MIKI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1327-1337

    In Long-Term Evolution (LTE)-Advanced, heterogeneous networks are important to further improve the system throughput per unit area. In heterogeneous network deployment, low power nodes such as picocells are overlaid onto macrocells. In the downlink, the combined usage of inter-cell interference coordination (ICIC), which is a technique that reduces the severe interference from macrocells by reducing the transmission power or stopping the transmission from the macrocells, and cell range expansion (CRE), which is a technique that expands the cell radius of picocells by biasing the received signal power, is very effective in improving the system and cell-edge user throughput. In this paper, we consider two types of ICIC. The first one reduces the transmission power from the macrocells (referred to as reduced power ICIC) and the second one stops the transmission from the macrocells (referred to as zero power ICIC). This paper investigates the impact of the reduction in the transmission power when using reduced power ICIC and the restriction on the modulation scheme caused by the reduction in the transmission power when using reduced power ICIC on the user throughput performance with the CRE offset value as a parameter. In addition, the throughput performance when applying reduced power ICIC is compared to that when applying zero power ICIC. Simulation results show that the user throughput with reduced power ICIC is not sensitive to the protected subframe ratio compared to that with zero power ICIC even if the modulation scheme is restricted to only QPSK in the protected subframes. This indicates that reduced power ICIC is more robust than zero power ICIC for non-optimum protected subframe ratios.

  • Analysis on Effectiveness of TDM Inter-Cell Interference Coordination in Heterogeneous Networks

    Masashi FUSHIKI  Noriaki MIYAZAKI  Xiaoqiu WANG  Satoshi KONISHI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1318-1326

    In order to support the increasing amount of mobile data traffic, Third Generation Partnership Project (3GPP) is actively discusses cell range expansion (CRE) and time domain multiplexing – inter-cell interference coordination (TDM-ICIC). They have shown to be attractive techniques for heterogeneous network (HetNet) deployment where pico base stations (BSs) overlay macro BSs. There are two control schemes of the TDM-ICIC. One, named ZP-scheme, stops radio resource assignments for data traffic in predetermined radio resources in the time domain (subframes). The other, named RP-scheme, maintains the resource assignment whereas it reduces the transmission power at macro BSs at predetermined subframes. In this paper, we clarify the effective ranges of both ZP-scheme and RP-scheme by conducting the system level simulations. Moreover, the appropriate power reduction value at predetermined subframes is also clarified from the difference in the effective range of various power reduction values. The comprehensive evaluation results show that both ZP-scheme and RP-scheme are not effective when the CRE bias value is 0 dB or less. If the CRE bias value is larger than 0 dB, they are effective when the ratio of predetermined subframes in all subframes is set to appropriate values. These values depend on the CRE bias value and power reduction in the predetermined subframes. The effective range is expanded when the power reduction in the predetermined subframes changes with the CRE bias value. Therefore, the effective range of RP-scheme is larger than that of ZP-scheme by setting an appropriate power reduction in the predetermined subframes.

  • A Simple Scheduling Restriction Scheme for Interference Coordinated Networks

    Moo Ryong JEONG  Nobuhiko MIKI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1306-1317

    Scheduling restriction is attracting much attention in LTE-Advanced as a technique to reduce the power consumption and network overheads in interference coordinated heterogeneous networks (HetNets). Such a network with inter-cell interference coordination (ICIC) provides two radio resources with different channel quality statistics. One of the resources is protected (unprotected) from inter-cell interference (hence, called protected (non-protected) resource) and has higher (lower) average channel quality. Without scheduling restriction, the channel quality feedback would be doubled to reflect the quality difference of the two resources. We present a simple scheduling restriction scheme that addresses the problem without significant performance degradation. Users with relatively larger (smaller) average channel quality difference between the two resources are scheduled in the protected (non-protected) resource only, and a boundary user, determined by a proportional fair resource allocation (PFRA) under simplified static channels, is scheduled on one of the two resources or both depending on PFRA. Having most users scheduled in only one of the resources, the power consumption and network overheads that would otherwise be required for the channel quality feedback on the other resource can be avoided. System level simulation of LTE-Advanced downlink shows that the performance degradation due to our scheduling restriction scheme is less than 2%, with the average feedback reduction of 40%.

  • Effect of Cell Range Expansion to Handover Performance for Heterogeneous Networks in LTE-Advanced Systems

    Koichiro KITAGAWA  Toshiaki YAMAMOTO  Satoshi KONISHI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1367-1376

    Cell Range Expansion (CRE) is a promising technique for the enhancement of traffic offload to pico cells. CRE is realized by adjusting the trigger timing of handover (HO) toward/from pico cells. However, inappropriate setting of trigger timing results in HO failures or Ping-Pong HOs. Both the HO failures and the Ping-Pong HOs degrade the continuity of user data services. Therefore, when CRE is applied, both the HO failures and the Ping-Pong HOs should be kept suppressed in order to guarantee the continuity of services for users. However, in the conventional studies, the application of CRE is discussed without consideration of HO performance. This paper clarifies the application range of CRE from the perspective of HO performance by taking the HO failure rates and the Ping-Pong HO rates as HO performance measures. As an example, we reveal that there is an appropriate CRE bias values which keep both the HO failure rate and Ping-Pong HO rate less than 1%. Such an appropriate CRE bias value range is smaller than the one without consideration of HO performance, which is reported in the conventional studies. The authors also observed that Ping-Pong HO occurs due to the short staying time of users at pico cells in high velocity environment. The rate of such Ping-Pong HOs becomes more than about 1% when the user velocity is more than 60 km/h. Therefore, it is more difficult in high velocity environment than that in low velocity environment to find appropriate CRE bias values.

  • Impact on Inter-Cell Interference of Reference Signal for Interference Rejection Combining Receiver in LTE-Advanced Downlink

    Yousuke SANO  Yusuke OHWATARI  Nobuhiko MIKI  Yuta SAGAE  Yukihiko OKUMURA  Yasutaka OGAWA  Takeo OHGANE  Toshihiko NISHIMURA  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3728-3738

    This paper investigates the dominant impact on the interference rejection combining (IRC) receiver due to the downlink reference signal (RS) based covariance matrix estimation scheme. When the transmission modes using the cell-specific RS (CRS) in LTE/LTE-Advanced are assumed, the property of the non-precoded CRS is different from that of the data signals. This difference poses two problems to the IRC receiver. First, it results in different levels of accuracy for the RS based covariance matrix estimation. Second, assuming the case where the CRS from the interfering cell collides with the desired data signals of the serving cell, the IRC receiver cannot perfectly suppress this CRS interference. The results of simulations assuming two transmitter and receiver antenna branches show that the impact of the CRS-to-CRS collision among cells is greater than that for the CRS interference on the desired data signals especially in closed-loop multiple-input multiple-output (MIMO) systems, from the viewpoint of the output signal-to-interference-plus-noise power ratio (SINR). However, the IRC receiver improves the user throughput by more than 20% compared to the conventional maximal ratio combining (MRC) receiver under the simulation assumptions made in this paper even when the CRS-to-CRS collision is assumed. Furthermore, the results verify the observations made in regard to the impact of inter-cell interference of the CRS for various average received signal-to-noise power ratio (SNR) and signal-to-interference power ratio (SIR) environments.

  • Link Performance Modeling of Interference Rejection Combining Receiver in System Level Evaluation for LTE-Advanced Downlink

    Yousuke SANO  Yusuke OHWATARI  Nobuhiko MIKI  Akihito MORIMOTO  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3739-3751

    The interference rejection combining (IRC) receiver, which can suppress inter-cell interference, is effective in improving the cell-edge user throughput. The IRC receiver is typically based on the minimum mean square error (MMSE) criteria, and requires a covariance matrix including the interference signals, in addition to a channel matrix from the serving cell. Therefore, in order to clarify the gain from the IRC receiver, the actual estimation error of these matrices should be taken into account. In a system performance evaluation, the link performance modeling of the IRC receiver, i.e., the output signal-to-interference-plus-noise power ratio (SINR) after IRC reception including the estimation errors, is very important in evaluating the actual performance of the IRC receiver in system level simulations. This is because these errors affect the suppression of the interference signals for the IRC receiver. Therefore, this paper investigates and proposes IRC receiver modeling schemes for the covariance matrix and channel estimation errors. As the modeling scheme for the covariance matrix, we propose a scheme that averages the conventional approximation using the complex Wishart distribution in the frequency domain to address issues that arise in a frequency selective fading channel. Furthermore, we propose a modeling scheme for the channel estimation error according to the ideal channel response of all cells and a channel estimation filter to address channel fading fluctuations. The results of simulations assuming the LTE/LTE-Advanced downlink with two transmitter and receiver antenna branches show that the proposed modeling scheme for the covariance matrix estimation error accurately approximates the performance of a realistic IRC receiver, which estimates the covariance matrix and channel matrix of the serving cell based on the demodulation reference signal (DM-RS), even in a frequency selective fading channel. The results also show that the proposed modeling scheme for the channel estimation error is a robust scheme in terms of the r.m.s. delay spread of a channel model compared to the scheme using the mean square error (MSE) statistic of the estimated channel coefficients based on a channel estimation filter.

1-20hit(40hit)