Ahmet Ihsan CANBOLAT Kazuhiko FUKAWA
This paper proposes an interference suppression scheme based on linear combining for multiple relay systems. Interference from base stations and relays in neighboring cells degrades the bit error rate (BER) performance of mobile stations (MSs) near cell boundaries. To suppress such interference for half-duplex relay systems, the proposed scheme linearly combines received signals of the first and second phases at MS. Without channel state information (CSI) feedback, weight coefficients for the linear combining are estimated by the recursive least-squares (RLS) algorithm, which requires only information on preamble symbols of the target MS. Computer simulations of orthogonal frequency-division multiplexing (OFDM) transmission under two-cell and frequency selective fading conditions are conducted. It is demonstrated that the RLS-based linear combining with decision directed estimation is superior to the RLS-based linear combining using only the preamble and can outperform the minimum mean-squared error (MMSE) combining with estimated CSI when the number of preamble symbols is two and four that correspond to the minimum requirements for MMSE and RLS, respectively.
Lei SUN Fangwei FU Xuang GUANG
Since 2008, three different classes of Boolean functions with optimal algebraic immunity have been proposed by Carlet and Feng [2], Wang et al.[8] and Chen et al.[3]. We call them C-F functions, W-P-K-X functions and C-T-Q functions for short. In this paper, we propose three affine equivalent classes of Boolean functions containing C-F functions, W-P-K-X functions and C-T-Q functions as a subclass, respectively. Based on the affine equivalence relation, we construct more classes of Boolean functions with optimal algebraic immunity. Moreover, we deduce a new lower bound on the nonlinearity of C-F functions, which is better than all the known ones.
Tawfik ISMAIL Erich LEITGEB Thomas PLANK
Increasing demand in data-traffic has been addressed over the last few years. It is expected that the data-traffic will present the significant part of the total backbone traffic. Accordingly, much more transmission systems will be required to support this growth. A free space optic (FSO) communication is the greatest promising technology supporting high-speed and high-capacity transport networks. It can support multi Gbit/s for few kilometers transmission distance. The benefits of an FSO system are widespread, low cost, flexibility, immunity to electromagnetic field, fast deployment, security, etc. However, it suffers from some drawbacks, which limit the deployment of FSO links. The main drawback in FSO is the degradation in the signal quality because of atmospheric channel impairments. In addition, it is high sensitive for illumination noise coming from external sources such as sun and lighting systems. It is more benefit that FSO and mmWave are operating as a complementary solution that is known as hybrid FSO/mmWave links. Whereas the mmWave is susceptible to heavy rain conditions and oxygen absorption, while fog has no particular effect. This paper will help to better understand the FSO and mmWave technologies and applications operating under various atmospheric conditions. Furthermore, in order to improve the system performance and availability, several modulation schemes will be discussed. In addition to, the hybrid FSO/mmWave with different diversity combining techniques are presented.
WPA is the security protocol for IEEE 802.11 wireless networks standardized as a substitute for WEP in 2003, and uses RC4 stream cipher for encryption. It improved a 16-byte RC4 key generation procedure, which is known as TKIP, from that in WEP. One of the remarkable features in TKIP is that the first 3-byte RC4 key is derived from the public parameter IV, and an analysis using this feature has been reported by Sen Gupta et al. at FSE 2014. They focused on correlations between the keystream bytes and the known RC4 key bytes in WPA, which are called key correlations or linear correlations, and improved the existing plaintext recovery attack using their discovered correlations. No study, however, has focused on such correlations including the internal states in WPA. In this paper, we investigated new linear correlations including unknown internal state variables in both generic RC4 and WPA. From the result, we can successfully discover various new linear correlations, and prove some correlations theoretically.
Nozomi HAGA Yusaku KASAHARA Kuniyuki MOTOJIMA
In the development of intrabody communication systems, it is important to understand the effects of user's posture on the communication channels. In this study, dynamic measurements of intrabody communication channels were made and their dependences on the grounding conditions were investigated. Furthermore, the physical mechanism of the dynamic communication channels was discussed based on electrostatic simulations. According to the measured and the simulated results, the variations in the signal transmission characteristics depend not only on the distance between the Tx and the Rx but also on the shadowing by body parts.
This paper focuses on the bandwidth allocation methods based on real user experience for web browsing applications. Because the Internet and its services are rapidly increasing, the bandwidth allocation problem has become one of the typical challenges for Internet service providers (ISPs) and network planning with respect to providing high service quality. The quality of experience (QoE) plays an important role in the success of services, and the guarantee of QoE accordingly represents an important goal in network resource control schemes. To cope with this issue, this paper proposes two user-centric bandwidth resource allocation methods for web browsing applications. The first method dynamically allocates bandwidth by considering the same user's satisfaction in terms of QoE with respect to all users in the system, whereas the second method introduces an efficient trade-off between the QoE of each user group and the average QoE of all users. The purpose of these proposals is to provide a flexible solution to reasonably allocate limited network resources to users. By considering service quality from real users' perception viewpoint, the proposed allocation methods enable us to understand actual users' experiences. Compared to previous works, the numerical results show that the proposed bandwidth allocation methods achieve the following contributions: improving the QoE level for dissatisfied users and providing a fair distribution, as well as retaining a reasonable average QoE.
Shaojing FU Jiao DU Longjiang QU Chao LI
Rotation symmetric Boolean functions (RSBFs) that are invariant under circular translation of indices have been used as components of different cryptosystems. In this paper, odd-variable balanced RSBFs with maximum algebraic immunity (AI) are investigated. We provide a construction of n-variable (n=2k+1 odd and n ≥ 13) RSBFs with maximum AI and nonlinearity ≥ 2n-1-¥binom{n-1}{k}+2k+2k-2-k, which have nonlinearities significantly higher than the previous nonlinearity of RSBFs with maximum AI.
Kazumasa OMOTE Phuong-Thao TRAN
Proof of Retrievability (POR) is a protocol by which a client can distribute his/her data to cloud servers and can check if the data stored in the servers is available and intact. After that, network coding-based POR has been applied to improve network throughput. Although many network coding-based PORs have been proposed, most of them have not achieved the following practical features: direct repair and dynamic operations. In this paper, we propose the D2-POR scheme (Direct repair and Dynamic operations in network coding-based POR) to address these shortcomings. When a server is corrupted, the D2-POR can support the direct repair in which the data stored in the corrupted server can be repaired using the data directly provided by healthy servers. The client is thus free from the burden of data repair. Furthermore, the D2-POR allows the client to efficiently perform dynamic operations, i.e., modification, insertion and deletion.
Rui WANG Qiaoyan WEN Hua ZHANG Xuelei LI
Tor is the most popular and well-researched low-latency anonymous communication network provides sender privacy to Internet users. It also provides recipient privacy by making TCP services available through “hidden service”, which allowing users not only to access information anonymously but also to publish information anonymously. However, based on our analysis of the hidden service protocol, we found a special combination of cells, which is the basic transmission unit over Tor, transmitted during the circuit creation procedure that could be used to degrade the anonymity. In this paper, we investigate a novel protocol-feature based attack against Tor's hidden service. The main idea resides in fact that an attacker could monitor traffic and manipulate cells at the client side entry router, and an adversary at the hidden server side could cooperate to reveal the communication relationship. Compared with other existing attacks, our attack reveals the client of a hidden service and does not rely on traffic analysis or watermarking techniques. We manipulate Tor cells at the entry router to generate the protocol-feature. Once our controlled entry onion routers detect such a feature, we can confirm the IP address of the client. We implemented this attack against hidden service and conducted extensive theoretical analysis and experiments over Tor network. The experiment results validate that our attack can achieve high rate of detection rate with low false positive rate.
Sukhumarn ARCHASANTISUK Takahiro AOYAGI Tero UUSITUPA Minseok KIM Jun-ichi TAKADA
In this paper, a novel approach of a human motion classification system in wireless body area network (WBAN) using received radio signal strength was developed. This method enables us to classify human motions in WBAN using only the radio signal strength during communication without additional tools such as an accelerometer. The proposed human motion classification system has a potential to be used for improving communication quality in WBAN as well as recording daily-life activities for self-awareness tool. To construct the classification system, a numerical simulation was used to generate WBAN propagation channel in various motions at frequency band of 403.5MHz and 2.45GHz. In the classification system, a feature vector representing a characteristic of human motions was computed from time-series received signal levels. The proposed human motion classification using the radio signal strength based on WBAN simulation can classify 3-5 human motions with the accuracy rate of 63.8-95.7 percent, and it can classify the human motions regardless of frequency band. In order to confirm that the human motion classification using radio signal strength can be used in practice, the applicability of the classification system was evaluated by WBAN measurement data.
Seon-Ho SHIN Jooyoung LEE Jong-Hyun KIM Ikkyun KIM MyungKeun YOON
We design a new hash table for high-speed networking that reduces main memory accesses even when the ratio of inserted items to the table size is high, at which point previous schemes no longer work. This improvement comes from a new design of a summary, called expanded keys, exploiting recent multiple hash functions and Bloom filter theories.
Keehang KWON Jeongyoon SEO Daeseong KANG
Adding versatile interactions to imperative programming - C, Java and Android - is an essential task. Unfortunately, existing languages provide only limited constructs for user interaction. These constructs are usually in the form of unbounded quantification. For example, existing languages can take the keyboard input from the user only via the read(x)/scan(x) statement. Note that the value of x is unbounded in the sense that x can have any value. This statement is thus not useful for applications with bounded inputs. To support bounded choices, we propose new bounded-choice statements for user interation. Each input device (keyboard, mouse, touchpad, ...) naturally requires a new bounded-choice statement. To make things simple, however, we focus on a bounded-choice statement for keyboard - kchoose - to allow for more controlled and more guided participation from the user. We illustrate our idea via CBI, an extension of the core C with a new bounded-choice statement for the keyboard.
The alternating direction implicit (ADI) method is proposed for low-rank solution of projected generalized continuous-time algebraic Lyapunov equations. The low-rank solution is expressed by Cholesky factor that is similar to that of Cholesky factorization for linear system of equations. The Cholesky factor is represented in a real form so that it is useful for balanced truncation of sparsely connected RLC networks. Moreover, we show how to determine the shift parameters which are required for the ADI iterations, where Krylov subspace method is used for finding the shift parameters that reduce the residual error quickly. In the illustrative examples, we confirm that the real Cholesky factor certainly provides low-rank solution of projected generalized continuous-time algebraic Lyapunov equations. Effectiveness of the shift parameters determined by Krylov subspace method is also demonstrated.
Jae-Ho LEE Hyung-Seok LEE Cheol-Hoon LEE
Wi-Fi P2P has been deployed extensively in mobile devices. However, Wi-Fi P2P is not efficient because it requires an IP layer connection for transmitting even short messages to nearby devices, especially in high density or highly mobile environments owing to the fact that a user on the move has difficulty selecting service-available devices, and a user device has to frequently connect to and be released from nearby devices. This paper proposes a new messaging framework that enables application-level messages to be exchanged between nearby devices with no IP layer connectivity over Wi-Fi P2P. The pre-association messaging framework (PAMF) supports both broadcast and unicast transmission to maximize the delivery success rate, considering the number of peers and messages. Evaluations of PAMF conducted under real scenarios show that application-level messages can be exchanged within a few seconds, with high success rate. PAMF provides high portability and extensibility because it does not breach the Wi-Fi P2P standard. Moreover, the demonstrations show that PAMF is practical for new proximity services such as local marketing and urgent messaging.
Li FENG Yujun KUANG Binwei WU Zeyang DAI Qin YU
In this paper, we propose a novel censor-based cooperative spectrum sensing strategy, called adaptive energy-efficient sensing (AES), in which both sequential sensing and censoring report mechanism are employed, aiming to reduce the sensing energy consumption of secondary user relays (SRs). In AES, an anchor secondary user (SU) requires cooperative sensing only when it does not detect the presence of PU by itself, and the cooperative SR adopts decision censoring report only if the sensing result differs from its previous one. We derive the generalized-form expressions false alarm and detection probabilities over Rayleigh fading channels for AES. The sensing energy consumption is also analyzed. Then, we study sensing energy overhead minimization problem and show that the sensing time allocation can be optimized to minimize the miss detection probability and sensing energy overhead. Finally, numerical results show that the proposed strategy can remarkably reduce the sensing energy consumption while only slightly degrading the detection performance compared with traditional scheme.
Yoko NAKAJIMA Michal PTASZYNSKI Hirotoshi HONMA Fumito MASUI
In everyday life, people use past events and their own knowledge in predicting probable unfolding of events. To obtain the necessary knowledge for such predictions, newspapers and the Internet provide a general source of information. Newspapers contain various expressions describing past events, but also current and future events, and opinions. In our research we focused on automatically obtaining sentences that make reference to the future. Such sentences can contain expressions that not only explicitly refer to future events, but could also refer to past or current events. For example, if people read a news article that states “In the near future, there will be an upward trend in the price of gasoline,” they may be likely to buy gasoline now. However, if the article says “The cost of gasoline has just risen 10 yen per liter,” people will not rush to buy gasoline, because they accept this as reality and may expect the cost to decrease in the future. In the following study we firstly investigate future reference sentences in newspapers and Web news. Next, we propose a method for automatic extraction of such sentences by using semantic role labels, without typical approaches (temporal expressions, etc.). In a series of experiments, we extract semantic role patterns from future reference sentences and examine the validity of the extracted patterns in classification of future reference sentences.
Huan HAO Huali WANG Weijun ZENG Hui TIAN
This paper presents a novel MEMD interval thresholding denoising, where relevant modes are selected by the similarity measure between the probability density functions of the input and that of each mode. Simulation and measured EEG data processing results show that the proposed scheme achieves better performance than other traditional denoisings.
Cong-Hoang DIEM Koya SATO Takeo FUJII
This paper proposes a novel cooperative scheme combining distributed space-time block code (STBC) at physical layer, multiple access protocol at medium access control (MAC) layer and opportunistic routing without complicated routing algorithm for achieving high reliability for vehicle-to-vehicle (V2V) communications. The proposed scheme can reduce interference and collision, and achieve reducing redundant broadcast of safety-related messages for multi-hop vehicular communications on highway. In particular, we propose a novel algorithm of relay selection based-on position, speed and direction of movement to select intermediate vehicle stations (VS) with high contribution according to the transmission direction. Furthermore, in order to reduce interference and collision, we install a new timer to select a master relay vehicle station (MVS) which manages a packet transmission of whole network to trigger and synchronize transmitting timing of relay VSs (RVSs) in each hop. From the results of simulations, we can confirm that the proposed method can achieve reducing the redundant broadcast safety-related messages with keeping the packet loss probability by limiting the retransmission at each VS.
Ryo HIROMASA Masayuki ABE Tatsuaki OKAMOTO
We construct the first fully homomorphic encryption (FHE) scheme that encrypts matrices and supports homomorphic matrix addition and multiplication. This is a natural extension of packed FHE and thus supports more complicated homomorphic operations. We optimize the bootstrapping procedure of Alperin-Sheriff and Peikert (CRYPTO 2014) by applying our scheme. Our optimization decreases the lattice approximation factor from Õ(n3) to Õ(n2.5). By taking a lattice dimension as a larger polynomial in a security parameter, we can also obtain the same approximation factor as the best known one of standard lattice-based public-key encryption without successive dimension-modulus reduction, which was essential for achieving the best factor in prior works on bootstrapping of standard lattice-based FHE.
Broadcasting and communications networks can be used together to offer hybrid broadcasting services that incorporate a variety of personalized information from communications networks in TV programs. To enable these services, many different applications have to be run on a user terminal, and it is necessary to establish an environment where any service provider can create applications and distribute them to users. The danger is that malicious service providers might distribute applications which may cause user terminals to take undesirable actions. To prevent such applications from being distributed, we propose an application authentication protocol for hybrid broadcasting and communications services. Concretely, we modify a key-insulated signature scheme and apply it to this protocol. In the protocol, a broadcaster distributes a distinct signing key to each service provider that the broadcaster trusts. As a result, users can verify that an application is reliable. If a signed application causes an undesirable action, a broadcaster can revoke the privileges and permissions of the service provider. In addition, the broadcaster can update the signing key. That is, our protocol is secure against leakage of the signing key by the broadcaster and service providers. Moreover, a user terminal uses only one verification key for verifying a signature, so the memory needed for storing the verification key in the user terminal is very small. With our protocol, users can securely receive hybrid services from broadcasting and communications networks.