Chang SUN Xiaoyu SUN Jiamin LI Pengcheng ZHU Dongming WANG Xiaohu YOU
The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.
Kairi TOKUDA Takehiro SATO Eiji OKI
Mobile edge computing (MEC) is a key technology for providing services that require low latency by migrating cloud functions to the network edge. The potential low quality of the wireless channel should be noted when mobile users with limited computing resources offload tasks to an MEC server. To improve the transmission reliability, it is necessary to perform resource allocation in an MEC server, taking into account the current channel quality and the resource contention. There are several works that take a deep reinforcement learning (DRL) approach to address such resource allocation. However, these approaches consider a fixed number of users offloading their tasks, and do not assume a situation where the number of users varies due to user mobility. This paper proposes Deep reinforcement learning model for MEC Resource Allocation with Dummy (DMRA-D), an online learning model that addresses the resource allocation in an MEC server under the situation where the number of users varies. By adopting dummy state/action, DMRA-D keeps the state/action representation. Therefore, DMRA-D can continue to learn one model regardless of variation in the number of users during the operation. Numerical results show that DMRA-D improves the success rate of task submission while continuing learning under the situation where the number of users varies.
Takanori HARA Masahiro SASABE Kento SUGIHARA Shoji KASAHARA
To establish a network service in network functions virtualization (NFV) networks, the orchestrator addresses the challenge of service chaining and virtual network function placement (SC-VNFP) by mapping virtual network functions (VNFs) and virtual links onto physical nodes and links. Unlike traditional networks, network operators in NFV networks must contend with both hardware and software failures in order to ensure resilient network services, as NFV networks consist of physical nodes and software-based VNFs. To guarantee network service quality in NFV networks, the existing work has proposed an approach for the SC-VNFP problem that considers VNF diversity and redundancy. VNF diversity splits a single VNF into multiple lightweight replica instances that possess the same functionality as the original VNF, which are then executed in a distributed manner. VNF redundancy, on the other hand, deploys backup instances with standby mode on physical nodes to prepare for potential VNF failures. However, the existing approach does not adequately consider the tradeoff between resource efficiency and service availability in the context of VNF diversity and redundancy. In this paper, we formulate the SC-VNFP problem with VNF diversity and redundancy as a two-step integer linear program (ILP) that adjusts the balance between service availability and resource efficiency. Through numerical experiments, we demonstrate the fundamental characteristics of the proposed ILP, including the tradeoff between resource efficiency and service availability.
Serdar BOZTAŞ Ferruh ÖZBUDAK Eda TEKİN
In this paper we obtain a new method to compute the correlation values of two arbitrary sequences defined by a mapping from F4n to F4. We apply this method to demonstrate that the usual nonbinary maximal length sequences have almost ideal correlation under the canonical complex correlation definition and investigate some decimations giving good cross correlation. The techniques we develop are of independent interest for future investigation of sequence design and related problems, including Boolean functions.
Weisen LUO Xiuqin WEI Hiroo SEKIYA
This paper presents an analysis-based design method for designing the class-Φ22 wireless power transfer (WPT) system, taking its subsystems as a whole into account. By using the proposed design method, it is possible to derive accurate design values which can make sure the class-E Zero-Voltage-Switching/Zero-Derivative-Switching (ZVS/ZDS) to obtain without applying any tuning processes. Additionally, it is possible to take the effects of the switch on resistance, diode forward voltage drop, and equivalent series resistances (ESRs) of all passive elements on the system operations into account. Furthermore, design curves for a wide range of parameters are developed and organized as basic data for various applications. The validities of the proposed design procedure and derived design curves are confirmed by LTspice simulation and circuit experiment. In the experimental measurements, the class-Φ22 WPT system achieves 78.8% power-transmission efficiency at 6.78MHz operating frequency and 7.96W output power. Additionally, the results obtained from the LTspice simulation and laboratory experiment show quantitative agreements with the analytical predictions, which indicates the accuracy and validity of the proposed analytical method and design curves given in this paper.
Leif Katsuo OXENLØWE Quentin SAUDAN Jasper RIEBESEHL Mujtaba ZAHIDY Smaranika SWAIN
This paper summarizes recent reports on the internet's energy consumption and the internet's benefits on climate actions. It discusses energy-efficiency and the need for a common standard for evaluating the climate impact of future communication technologies and suggests a model that can be adapted to different internet applications such as streaming, online reading and downloading. The two main approaches today are based on how much data is transmitted or how much time the data is under way. The paper concludes that there is a need for a standardized method to estimate energy consumption and CO2 emission related to internet services. This standard should include a method for energy-optimizing future networks, where every Wh will be scrutinized.
Yuma KAWAMOTO Toki YOSHIOKA Norihiko SHIBATA Daniel HEADLAND Masayuki FUJITA Ryo KOMA Ryo IGARASHI Kazutaka HARA Jun-ichi KANI Tadao NAGATSUMA
We propose a novel silicon diplexer integrated with filters for frequency-division multiplexing in the 300-GHz band. The diplexer consists of a directional coupler formed of unclad silicon wires, a photonic bandgap-based low-pass filter, and a high-pass filter based on frequency-dependent bending loss. These integrated filters are capable of suppressing crosstalk and providing >15dB isolation over 40GHz, which is highly beneficial for terahertz-range wireless communications applications. We have used this diplexer in a simultaneous error-free wireless transmission of 300-GHz and 335-GHz channels at the aggregate data rate of 36Gbit/s.
Rongcheng DONG Taisuke IZUMI Naoki KITAMURA Yuichi SUDO Toshimitsu MASUZAWA
The maximal independent set (MIS) problem is one of the most fundamental problems in the field of distributed computing. This paper focuses on the MIS problem with unreliable communication between processes in the system. We propose a relaxed notion of MIS, named almost MIS (ALMIS), and show that the loosely-stabilizing algorithm proposed in our previous work can achieve exponentially long holding time with logarithmic convergence time and space complexity regarding ALMIS, which cannot be achieved at the same time regarding MIS in our previous work.
Ying JI Yu WANG Kensaku MORI Jien KATO
Social relationships (e.g., couples, opponents) are the foundational part of society. Social relation atmosphere describes the overall interaction environment between social relationships. Discovering social relation atmosphere can help machines better comprehend human behaviors and improve the performance of social intelligent applications. Most existing research mainly focuses on investigating social relationships, while ignoring the social relation atmosphere. Due to the complexity of the expressions in video data and the uncertainty of the social relation atmosphere, it is even difficult to define and evaluate. In this paper, we innovatively analyze the social relation atmosphere in video data. We introduce a Relevant Visual Concept (RVC) from the social relationship recognition task to facilitate social relation atmosphere recognition, because social relationships contain useful information about human interactions and surrounding environments, which are crucial clues for social relation atmosphere recognition. Our approach consists of two main steps: (1) we first generate a group of visual concepts that preserve the inherent social relationship information by utilizing a 3D explanation module; (2) the extracted relevant visual concepts are used to supplement the social relation atmosphere recognition. In addition, we present a new dataset based on the existing Video Social Relation Dataset. Each video is annotated with four kinds of social relation atmosphere attributes and one social relationship. We evaluate the proposed method on our dataset. Experiments with various 3D ConvNets and fusion methods demonstrate that the proposed method can effectively improve recognition accuracy compared to end-to-end ConvNets. The visualization results also indicate that essential information in social relationships can be discovered and used to enhance social relation atmosphere recognition.
Yasutaka OGAWA Shuto TADOKORO Satoshi SUYAMA Masashi IWABUCHI Toshihiko NISHIMURA Takanori SATO Junichiro HAGIWARA Takeo OHGANE
Technology for sixth-generation (6G) mobile communication system is now being widely studied. A sub-Terahertz band is expected to play a great role in 6G to enable extremely high data-rate transmission. This paper has two goals. (1) Introduction of 6G concept and propagation characteristics of sub-Terahertz-band radio waves. (2) Performance evaluation of intelligent reflecting surfaces (IRSs) based on beamforming in a sub-Terahertz band for smart radio environments (SREs). We briefly review research on SREs with reconfigurable intelligent surfaces (RISs), and describe requirements and key features of 6G with a sub-Terahertz band. After that, we explain propagation characteristics of sub-Terahertz band radio waves. Important feature is that the number of multipath components is small in a sub-Terahertz band in indoor office environments. This leads to an IRS control method based on beamforming because the number of radio waves out of the optimum beam is very small and power that is not used for transmission from the IRS to user equipment (UE) is little in the environments. We use beams generated by a Butler matrix or a DFT matrix. In simulations, we compare the received power at a UE with that of the upper bound value. Simulation results show that the proposed method reveals good performance in the sense that the received power is not so lower than the upper bound value.
Tao LIU Meiyue WANG Dongyan JIA Yubo LI
In the massive machine-type communication scenario, aiming at the problems of active user detection and channel estimation in the grant-free non-orthogonal multiple access (NOMA) system, new sets of non-orthogonal spreading sequences are proposed by using the zero/low correlation zone sequence set with low correlation among multiple sets. The simulation results show that the resulting sequence set has low coherence, which presents reliable performance for channel estimation and active user detection based on compressed sensing. Compared with the traditional Zadoff-Chu (ZC) sequences, the new non-orthogonal spreading sequences have more flexible lengths, and lower peak-to-average power ratio (PAPR) and smaller alphabet size. Consequently, these sequences will effectively solve the problem of high PAPR of time domain signals and are more suitable for low-cost devices in massive machine-type communication.
Takanari KASHIWAGI Genki KUWANO Shungo NAKAGAWA Mayu NAKAYAMA Jeonghyuk KIM Kanae NAGAYAMA Takuya YUHARA Takuya YAMAGUCHI Yuma SAITO Shohei SUZUKI Shotaro YAMADA Ryuta KIKUCHI Manabu TSUJIMOTO Hidetoshi MINAMI Kazuo KADOWAKI
Our group has developed terahertz(THz)-waves emitting devices utilizing single crystals of high temperature superconductor Bi2Sr2CaCu2O8+δ (Bi2212). The working principle of the device is based on the AC Josephson effect which is originated in the intrinsic Josephson junctions (IJJs) constructed in Bi2212 single crystals. In principle, based on the superconducting gap of the compound and the AC Josephson effect, the emission frequency range from 0.1 to 15 THz can be generated by simply adjusting bias voltages to the IJJs. In order to improve the device performances, we have performed continuous improvement to the device structures. In this paper, we present our recent approaches to high performance Bi2212 THz-waves emitters. Firstly, approaches to the reduction of self Joule heating of the devices is described. In virtue of improved device structures using Bi2212 crystal chips, the device characteristics, such as the radiation frequency and the output power, become better than previous structures. Secondly, developments of THz-waves emitting devices using IJJs-mesas coupled with external structures are explained. The results clearly indicate that the external structures are very useful not only to obtain desired radiation frequencies higher than 1 THz but also to control radiation frequency characteristics. Finally, approaches to further understanding of the spontaneous synchronization of IJJs is presented. The device characteristics obtained through the approaches would play important roles in future developments of THz-waves emitting devices by use of Bi2212 single crystals.
This paper summarizes the modulation configurations of phase locked loops (PLLs) and their integration in semiconductor circuits, e.g., the input modulation for cellular phones, direct-modulation for low power wireless sensor networks, feedback-loop modulation for high-speed transmission, and two-point modulation for short-range radio transceivers. In this survey, basic configuration examples of integrated circuits for wired and wireless applications which are using the PLL modulation configurations are explained. It is important to select the method for simply and effectively determining the characteristics corresponding to the specific application. The paper also surveys technologies for future PLL design for digitizing of an entire PLL to reduce the phase noise due to a modulation by using a feedback loop with a precise digital phase comparison and a numerically controlled oscillator with high linearity.
This paper proposes a deep neural network named BayesianPUFNet that can achieve high prediction accuracy even with few challenge-response pairs (CRPs) available for training. Generally, modeling attacks are a vulnerability that could compromise the authenticity of physically unclonable functions (PUFs); thus, various machine learning methods including deep neural networks have been proposed to assess the vulnerability of PUFs. However, conventional modeling attacks have not considered the cost of CRP collection and analyzed attacks based on the assumption that sufficient CRPs were available for training; therefore, previous studies may have underestimated the vulnerability of PUFs. Herein, we show that the application of Bayesian deep neural networks that incorporate Bayesian statistics can provide accurate response prediction even in situations where sufficient CRPs are not available for learning. Numerical experiments show that the proposed model uses only half the CRP to achieve the same response prediction as that of the conventional methods. Our code is openly available on https://github.com/bayesian-puf-net/bayesian-puf-net.git.
Nariyoshi CHIDA Tachio TERAUCHI
Many modern regular expression engines employ various extensions to give more expressive support for real-world usages. Among the major extensions employed by many of the modern regular expression engines are backreferences and lookaheads. A question of interest about these extended regular expressions is their expressive power. Previous works have shown that (i) the extension by lookaheads does not enhance the expressive power, i.e., the expressive power of regular expressions with lookaheads is still regular, and that (ii) the extension by backreferences enhances the expressive power, i.e., the expressive power of regular expressions with backreferences (abbreviated as rewb) is no longer regular. This raises the following natural question: Does the extension of regular expressions with backreferences by lookaheads enhance the expressive power of regular expressions with backreferences? This paper answers the question positively by proving that adding either positive lookaheads or negative lookaheads increases the expressive power of rewb (the former abbreviated as rewblp and the latter as rewbln). A consequence of our result is that neither the class of finite state automata nor that of memory automata (MFA) of Schmid[2] (which corresponds to regular expressions with backreferenes but without lookaheads) corresponds to rewblp or rewbln. To fill the void, as a first step toward building such automata, we propose a new class of automata called memory automata with positive lookaheads (PLMFA) that corresponds to rewblp. The key idea of PLMFA is to extend MFA with a new kind of memories, called positive-lookahead memory, that is used to simulate the backtracking behavior of positive lookaheads. Interestingly, our positive-lookahead memories are almost perfectly symmetric to the capturing-group memories of MFA. Therefore, our PLMFA can be seen as a natural extension of MFA that can be obtained independently of its original intended purpose of simulating rewblp.
Noriko YUASA Masahiro YAMAGUCHI Kosuke SHIMA Takanobu OTSUKA
At manufacturing sites, mass customization is expanding along with the increasing variety of customer needs. This situation leads to complications in production planning for the factory manager, and production plans are likely to change suddenly at the manufacturing site. Because such sudden fluctuations in production often occur, it is particularly difficult to optimize the parts supply operations in these production processes. As a solution to such problems, Industry 4.0 has expanded to promote the use of digital technologies at manufacturing sites; however, these solutions can be expensive and time-consuming to introduce. Therefore, not all factory managers are favorable toward introducing digital technology. In this study, we propose a method to support parts supply operations that decreases work stagnation and fluctuation without relying on the experience of workers who supply parts in the various production processes. Furthermore, we constructed a system that is inexpensive and easy to introduce using both LPWA and BLE communications. The purpose of the system is to level out work in in-process logistics. In an experiment, the proposed method was introduced to a manufacturing site, and we compared how the workload of the site's workers changed. The experimental results show that the proposed method is effective for workload leveling in parts supply operations.
We consider both-ends-fixed k-ary necklaces and enumerate all such necklaces of length n from the viewpoints of symbolic dynamics and β-expansions, where n and k(≥ 2) are natural numbers and β(> 1) is a real number. Recently, Sawada et al. proposed an efficient construction of k-ary de Bruijn sequence of length kn, which for each n ≥ 1, requires O(n) space but generates a single k-ary de Bruijn sequence of length kn in O(1)-amortized time per bit. Based on the enumeration of both-ends-fixed k-ary necklaces of length n, we evaluate auto-correlation values of the k-ary de Bruijn sequences of length kn constructed by Sawada et al. We also estimate the asymptotic behaviour of the obtained auto-correlation values as n tends to infinity.
Intelligent reconfigurable surfaces (IRS) have attracted much attention from both industry and academia due to their performance improving capability and low complexity for 6G wireless communication systems. In this letter, we introduce an IRS-assisted space-time line code (STLC) technique. The STLC was introduced as a promising technique to acquire the optimal diversity gain in 1×2 single-input multiple-output (SIMO) channel without channel state information at receiver (CSIR). Using the cosine similarity theorem, we propose a novel phase-steering technique for the proposed IRS-assisted STLC technique. We also mathematically characterize the proposed IRS-assisted STLC technique in terms of outage probability and bit-error rate (BER). Based on computer simulations, it is shown that the results of analysis shows well match with the computer simulation results for various communication scenarios.
Construction of resilient Boolean functions in odd variables having strictly almost optimal (SAO) nonlinearity appears to be a rather difficult task in stream cipher and coding theory. In this paper, based on the modified High-Meets-Low technique, a general construction to obtain odd-variable SAO resilient Boolean functions without directly using PW functions or KY functions is presented. It is shown that the new class of functions possess higher resiliency order than the known functions while keeping higher SAO nonlinearity, and in addition the resiliency order increases rapidly with the variable number n.
Feng LIU Qianqian WU Conggai LI Fangjiong CHEN Yanli XU
To improve the performance of underwater acoustic communications, this letter proposes a polar coding scheme with adaptive channel equalization, which can reduce the amount of feedback information. Furthermore, a hybrid automatic repeat request (HARQ) mechanism is provided to mitigate the impact of estimation errors. Simulation results show that the proposed scheme outperforms the turbo equalization in bit error rate. Computational complexity analysis is also provided for comparison.