The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ions(1385hit)

61-80hit(1385hit)

  • A New 10-Variable Cubic Bent Function Outside the Completed Maiorana-McFarland Class

    Yanjun LI  Haibin KAN  Jie PENG  Chik How TAN  Baixiang LIU  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/02/22
      Vol:
    E104-A No:9
      Page(s):
    1353-1356

    In this letter, we present a construction of bent functions which generalizes a work of Zhang et al. in 2016. Based on that, we obtain a cubic bent function in 10 variables and prove that, it has no affine derivative and does not belong to the completed Maiorana-McFarland class, which is opposite to all 6/8-variable cubic bent functions as they are inside the completed Maiorana-McFarland class. This is the first time a theoretical proof is given to show that the cubic bent functions in 10 variables can be outside the completed Maiorana-McFarland class. Before that, only a sporadic example with such properties was known by computer search. We also show that our function is EA-inequivalent to that sporadic one.

  • The Explicit Dual of Leander's Monomial Bent Function

    Yanjun LI  Haibin KAN  Jie PENG  Chik How TAN  Baixiang LIU  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1357-1360

    Permutation polynomials and their compositional inverses are crucial for construction of Maiorana-McFarland bent functions and their dual functions, which have the optimal nonlinearity for resisting against the linear attack on block ciphers and on stream ciphers. In this letter, we give the explicit compositional inverse of the permutation binomial $f(z)=z^{2^{r}+2}+alpha zinmathbb{F}_{2^{2r}}[z]$. Based on that, we obtain the dual of monomial bent function $f(x)={ m Tr}_1^{4r}(x^{2^{2r}+2^{r+1}+1})$. Our result suggests that the dual of f is not a monomial any more, and it is not always EA-equivalent to f.

  • Learning Dynamic Systems Using Gaussian Process Regression with Analytic Ordinary Differential Equations as Prior Information

    Shengbing TANG  Kenji FUJIMOTO  Ichiro MARUTA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1440-1449

    Recently the data-driven learning of dynamic systems has become a promising approach because no physical knowledge is needed. Pure machine learning approaches such as Gaussian process regression (GPR) learns a dynamic model from data, with all physical knowledge about the system discarded. This goes from one extreme, namely methods based on optimizing parametric physical models derived from physical laws, to the other. GPR has high flexibility and is able to model any dynamics as long as they are locally smooth, but can not generalize well to unexplored areas with little or no training data. The analytic physical model derived under assumptions is an abstract approximation of the true system, but has global generalization ability. Hence the optimal learning strategy is to combine GPR with the analytic physical model. This paper proposes a method to learn dynamic systems using GPR with analytic ordinary differential equations (ODEs) as prior information. The one-time-step integration of analytic ODEs is used as the mean function of the Gaussian process prior. The total parameters to be trained include physical parameters of analytic ODEs and parameters of GPR. A novel method is proposed to simultaneously learn all parameters, which is realized by the fully Bayesian GPR and more promising to learn an optimal model. The standard Gaussian process regression, the ODE method and the existing method in the literature are chosen as baselines to verify the benefit of the proposed method. The predictive performance is evaluated by both one-time-step prediction and long-term prediction. By simulation of the cart-pole system, it is demonstrated that the proposed method has better predictive performances.

  • Construction of Multiple-Valued Bent Functions Using Subsets of Coefficients in GF and RMF Domains

    Milo&scaron M. RADMANOVIĆ  Radomir S. STANKOVIĆ  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/21
      Vol:
    E104-D No:8
      Page(s):
    1103-1110

    Multiple-valued bent functions are functions with highest nonlinearity which makes them interesting for multiple-valued cryptography. Since the general structure of bent functions is still unknown, methods for construction of bent functions are often based on some deterministic criteria. For practical applications, it is often necessary to be able to construct a bent function that does not belong to any specific class of functions. Thus, the criteria for constructions are combined with exhaustive search over all possible functions which can be very CPU time consuming. A solution is to restrict the search space by some conditions that should be satisfied by the produced bent functions. In this paper, we proposed the construction method based on spectral subsets of multiple-valued bent functions satisfying certain appropriately formulated restrictions in Galois field (GF) and Reed-Muller-Fourier (RMF) domains. Experimental results show that the proposed method efficiently constructs ternary and quaternary bent functions by using these restrictions.

  • Spatial Degrees of Freedom Exploration and Analog Beamforming Designs for Signature Spatial Modulation

    Yuwen CAO  Tomoaki OHTSUKI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/02/24
      Vol:
    E104-B No:8
      Page(s):
    934-941

    In this paper, we focus on developing efficient multi-configuration selection mechanisms by exploiting the spatial degrees of freedom (DoF), and leveraging the simple design benefits of spatial modulation (SM). Notably, the SM technique, as well as its variants, faces the following critical challenges: (i) the performance degradation and difficulty in improving the system performance for higher-level QAM constellations, and (ii) the vast complexity cost in precoder designs particularly for the increasing system dimension and amplitude-phase modulation (APM) constellation dimension. Given this situation, we first investigate two independent modulation domains, i.e., the original signal- and spatial-constellations. By exploiting the analog shift weighting and the virtual spatial signature technologies, we introduce the signature spatial modulation (SSM) concept, which is capable of guaranteing superior trade-offs among spectral- and cost-efficiencies, and system bit error rate (BER) performance. Besides, we develop an analog beamforming for SSM by solving the introduced unconstrained Lagrange dual function minimization problem. Numerical results manifest the performance gain brought by our developed analog beamforming for SSM.

  • Construction of Ternary Bent Functions by FFT-Like Permutation Algorithms

    Radomir S. STANKOVIĆ  Milena STANKOVIĆ  Claudio MORAGA  Jaakko T. ASTOLA  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:8
      Page(s):
    1092-1102

    Binary bent functions have a strictly specified number of non-zero values. In the same way, ternary bent functions satisfy certain requirements on the elements of their value vectors. These requirements can be used to specify six classes of ternary bent functions. Classes are mutually related by encoding of function values. Given a basic ternary bent function, other functions in the same class can be constructed by permutation matrices having a block structure similar to that of the factor matrices appearing in the Good-Thomas decomposition of Cooley-Tukey Fast Fourier transform and related algorithms.

  • Effect of Failures on Stock Price of Telecommunication Service Providers

    Masahiro HAYASHI  

     
    PAPER

      Pubricized:
    2021/01/18
      Vol:
    E104-B No:7
      Page(s):
    829-836

    This paper reports the results of a new test on what types of failure cause falls in the stock prices of telecommunication service providers. This analysis of stock price is complementary to our previous one on market share. A clear result of our new test is that the type of failure causing falls in stock price is different from the type causing decline in market share. Specifically, the previous study identified frequent failures as causes of decline in market share, while the current study indicates large failures affecting many users as causes of falls in stock price. Together, these analyses give important information for reliability designs of telecommunications networks.

  • Video Magnification under the Presence of Complex Background Motions

    Long ZHANG  Xuezhi YANG  

     
    LETTER-Computer Graphics

      Pubricized:
    2021/03/15
      Vol:
    E104-D No:6
      Page(s):
    909-914

    We propose a video magnification method for magnifying subtle color and motion changes under the presence of non-meaningful background motions. We use frequency variability to design a filter that passes only meaningful subtle changes and removes non-meaningful ones; our method obtains more impressive magnification results without artifacts than compared methods.

  • Sensor Gain-Phase Error and Position Perturbation Estimation Using an Auxiliary Source in an Unknown Direction

    Zheng DAI  Weimin SU  Hong GU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/12/03
      Vol:
    E104-B No:6
      Page(s):
    639-646

    In this paper, we propose an active calibration algorithm to tackle both gain-phase errors and position perturbations. Unlike many other active calibration methods, which fix the array while changing the location of the source, our approach rotates the array but does not change the location of the source, and knowledge of the direction-of-arrival (DOA) of the far-field calibration source is not required. The superiority of the proposed method lies in the fact that measurement of the direction of a far-field calibration source is not easy to carry out, while measurement of the rotation angle via the proposed calibration strategy is convenient and accurate. To obtain the receiving data from different directions, the sensor array is rotated to three different positions with known rotation angles. Based on the eigen-decomposition of the data covariance matrices, we can use the direction of the auxiliary source to represent the gain-phase errors and position perturbations. After that, we estimate the DOA of the calibration source by a one-dimensional search. Finally, the sensor gain-phase errors and position perturbations are calculated by using the estimated direction of the calibration source. Simulations verify the effectiveness and performance of the algorithm.

  • Recent Advances in Video Action Recognition with 3D Convolutions Open Access

    Kensho HARA  

     
    INVITED PAPER

      Pubricized:
    2020/12/07
      Vol:
    E104-A No:6
      Page(s):
    846-856

    The performance of video action recognition has improved significantly in recent decades. Current recognition approaches mainly utilize convolutional neural networks to acquire video feature representations. In addition to the spatial information of video frames, temporal information such as motions and changes is important for recognizing videos. Therefore, the use of convolutions in a spatiotemporal three-dimensional (3D) space for representing spatiotemporal features has garnered significant attention. Herein, we introduce recent advances in 3D convolutions for video action recognition.

  • Straight-Line Dual-Polarization PSK Transmitter with Polarization Differential Modulation

    Shota ISHIMURA  Kosuke NISHIMURA  Yoshiaki NAKANO  Takuo TANEMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2020/10/27
      Vol:
    E104-B No:5
      Page(s):
    490-496

    Coherent transceivers are now regarded as promising candidates for upgrading the current 400Gigabit Ethernet (400GbE) transceivers to 800G. However, due to the complicated structure of a dual-polarization IQ modulator (DP-IQM) with its bulky polarization-beam splitter/comber (PBS/PBC), the increase in the transmitter size and cost is inevitable. In this paper, we propose a compact PBS/PBC-free transmitter structure with a straight-line configuration. By using the concept of polarization differential modulation, the proposed transmitter is capable of generating a DP phase-shift-keyed (DP-PSK) signal, which makes it directly applicable to the current coherent systems. A detailed analysis of the system performance reveals that the imperfect equalization and the bandwidth limitation at the receiver are the dominant penalty factors. Although such a penalty is usually unacceptable in long-haul applications, the proposed transmitter can be attractive due to its significant simplicity and compactness for short-reach applications, where the cost and the footprint are the primary concerns.

  • DORR: A DOR-Based Non-Blocking Optical Router for 3D Photonic Network-on-Chips

    Meaad FADHEL  Huaxi GU  Wenting WEI  

     
    PAPER-Computer System

      Pubricized:
    2021/01/27
      Vol:
    E104-D No:5
      Page(s):
    688-696

    Recently, researchers paid more attention on designing optical routers, since they are essential building blocks of all photonic interconnection architectures. Thus, improving them could lead to a spontaneous improvement in the overall performance of the network. Optical routers suffer from the dilemma of increased insertion loss and crosstalk, which upraises the power consumed as the network scales. In this paper, we propose a new 7×7 non-blocking optical router based on the Dimension Order Routing (DOR) algorithm. Moreover, we develop a method that can ensure the least number of MicroRing Resonators (MRRs) in an optical router. Therefore, by reducing these optical devices, the optical router proposed can decrease the crosstalk and insertion loss of the network. This optical router is evaluated and compared to Ye's router and the optimized crossbar for 3D Mesh network that uses XYZ routing algorithm. Unlike many other proposed routers, this paper evaluates optical routers not only from router level prospective yet also consider the overall network level condition. The appraisals show that our optical router can reduce the worst-case network insertion loss by almost 8.7%, 46.39%, 39.3%, and 41.4% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively. Moreover, it decreases the Optical Signal-to-Noise Ratio (OSNR) worst-case by almost 27.92%, 88%, 77%, and 69.6% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively. It also reduces the power consumption by 3.22%, 23.99%, 19.12%, and 20.18% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively.

  • Statistical Analysis of Phase-Only Correlation Functions under the Phase Fluctuation of Signals due to Additive Gaussian Noise

    Shunsuke YAMAKI  Kazuhiro FUKUI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2020/09/29
      Vol:
    E104-A No:4
      Page(s):
    671-679

    This paper proposes statistical analysis of phase-only correlation (POC) functions under the phase fluctuation of signals due to additive Gaussian noise. We derive probability density function of phase-spectrum differences between original signal and its noise-corrupted signal with additive Gaussian noise. Furthermore, we evaluate the expectation and variance of the POC functions between these two signals. As the variance of Gaussian noise increases, the expectation of the peak of the POC function monotonically decreases and variance of the POC function monotonically increases. These results mathematically guarantee the validity of the POC functions used for similarity measure in matching techniques.

  • Comprehensive Feasibility Study on Direct Spectrum Division Transmission over Multiple Satellite Transponders

    Fumihiro YAMASHITA  Daisuke GOTO  Yasuyoshi KOJIMA  Jun-ichi ABE  Takeshi ONIZAWA  

     
    PAPER-Satellite Communications

      Pubricized:
    2020/10/22
      Vol:
    E104-B No:4
      Page(s):
    446-454

    We have developed a direct spectrum division transmission (DSDT) technique that can divide a single-carrier signal into multiple sub-spectra and assign them to dispersed frequency resources of the satellite transponder to improve the spectrum efficiency of the whole system. This paper summarizes the satellite experiments on DSDT over a single and/or multiple satellite transponders, while changing various parameters such as modulation schemes, roll-off ratios, and symbol rates. In addition, by considering practical use conditions, we present an evaluation of the performance when the spectral density of each sub-spectrum differed across transponders. The satellite experiments demonstrate that applying the proposal does not degrade the bit error rate (BER) performance. Thus, the DSDT technique is a practical approach to use the scattered unused frequency resources over not only a single transponder but also multiple ones.

  • Compact Model of Magnetic Tunnel Junctions for SPICE Simulation Based on Switching Probability

    Haoyan LIU  Takashi OHSAWA  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2020/09/08
      Vol:
    E104-C No:3
      Page(s):
    121-127

    We propose a compact magnetic tunnel junction (MTJ) model for circuit simulation by de-facto standard SPICE in this paper. It is implemented by Verilog-A language which makes it easy to simulate MTJs with other standard devices. Based on the switching probability, we smoothly connect the adiabatic precessional model and the thermal activation model by using an interpolation technique based on the cubic spline method. We can predict the switching time after a current is applied. Meanwhile, we use appropriate physical models to describe other MTJ characteristics. Simulation results validate that the model is consistent with experimental data and effective for MTJ/CMOS hybrid circuit simulation.

  • Clustering of Handwritten Mathematical Expressions for Computer-Assisted Marking

    Vu-Tran-Minh KHUONG  Khanh-Minh PHAN  Huy-Quang UNG  Cuong-Tuan NGUYEN  Masaki NAKAGAWA  

     
    PAPER-Educational Technology

      Pubricized:
    2020/11/24
      Vol:
    E104-D No:2
      Page(s):
    275-284

    Many approaches enable teachers to digitalize students' answers and mark them on the computer. However, they are still limited for supporting marking descriptive mathematical answers that can best evaluate learners' understanding. This paper presents clustering of offline handwritten mathematical expressions (HMEs) to help teachers efficiently mark answers in the form of HMEs. In this work, we investigate a method of combining feature types from low-level directional features and multiple levels of recognition: bag-of-symbols, bag-of-relations, and bag-of-positions. Moreover, we propose a marking cost function to measure the marking effort. To show the effectiveness of our method, we used two datasets and another sampled from CROHME 2016 with synthesized patterns to prepare correct answers and incorrect answers for each question. In experiments, we employed the k-means++ algorithm for each level of features and considered their combination to produce better performance. The experiments show that the best combination of all the feature types can reduce the marking cost to about 0.6 by setting the number of answer clusters appropriately compared with the manual one-by-one marking.

  • A Two-Sources Estimator Based on the Expectation of Permitted Permutations Count in Complex Networks

    Liang ZHU  Youguo WANG  Jian LIU  

     
    LETTER-Graphs and Networks

      Pubricized:
    2020/08/20
      Vol:
    E104-A No:2
      Page(s):
    576-581

    Identifying the infection sources in a network, including the sponsor of a network rumor, the servers that inject computer virus into a computer network, or the zero-patient in an infectious disease network, plays a critical role in limiting the damage caused by the infection. A two-source estimator is firstly constructed on basis of partitions of infection regions in this paper. Meanwhile, the two-source estimation problem is transformed into calculating the expectation of permitted permutations count which can be simplified to a single-source estimation problem under determined infection region. A heuristic algorithm is also proposed to promote the estimator to general graphs in a Breadth-First-Search (BFS) fashion. Experimental results are provided to verify the performance of our method and illustrate variations of error detection in different networks.

  • New Iterated RC4 Key Correlations and their Application to Plaintext Recovery on WPA-TKIP

    Ryoma ITO  Atsuko MIYAJI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    190-202

    This paper presents new key correlations of the keystream bytes generated from RC4 and their application to plaintext recovery on WPA-TKIP. We first observe new key correlations between two bytes of the RC4 key pairs and a keystream byte in each round, and provide their proofs. We refer to these correlations as iterated RC4 key correlations since two bytes of the RC4 key pairs are iterated every 16 rounds. We then extend the existing attacks by Isobe et al. at FSE 2013 and AlFardan et al. at USENIX Security 2013, 0and finally propose an efficient attack on WPA-TKIP. We refer to the proposed attack as chosen plaintext recovery attack (CPRA) since it chooses the best approach for each byte from a variety of the existing attacks. In order to recover the first 257 bytes of a plaintext on WPA-TKIP with success probability of at least 90%, CPRA requires approximately 230 ciphertexts, which are approximately half the number of ciphertexts for the existing attack by Paterson et al. at FSE 2014.

  • On a Relation between Knowledge-of-Exponent Assumptions and the DLog vs. CDH Question

    Firas KRAIEM  Shuji ISOBE  Eisuke KOIZUMI  Hiroki SHIZUYA  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    20-24

    Knowledge-of-exponent assumptions (KEAs) are a somewhat controversial but nevertheless commonly used type of cryptographic assumptions. While traditional cryptographic assumptions simply assert that certain tasks (like factoring integers or computing discrete logarithms) cannot be performed efficiently, KEAs assert that certain tasks can be performed efficiently, but only in certain ways. The controversy surrounding those assumptions is due to their non-falsifiability, which is due to the way this idea is formalised, and to the general idea that these assumptions are “strong”. Nevertheless, their relationship to existing assumptions has not received much attention thus far. In this paper, we show that the first KEA (KEA1), introduced by Damgård in 1991, implies that computing discrete logarithms is equivalent to solving the computational Diffie-Hellman (CDH) problem. Since showing this equivalence in the standard setting (i.e., without the assumption that KEA1 holds) is a longstanding open question, this indicates that KEA1 (and KEAs in general) are indeed quite strong assumptions.

  • 2.65Gbps Downlink Communications with Polarization Multiplexing in X-Band for Small Earth Observation Satellite Open Access

    Tomoki KANEKO  Noriyuki KAWANO  Yuhei NAGAO  Keishi MURAKAMI  Hiromi WATANABE  Makoto MITA  Takahisa TOMODA  Keiichi HIRAKO  Seiko SHIRASAKA  Shinichi NAKASUKA  Hirobumi SAITO  Akira HIROSE  

     
    POSITION PAPER-Satellite Communications

      Pubricized:
    2020/07/01
      Vol:
    E104-B No:1
      Page(s):
    1-12

    This paper reports our new communication components and downlink tests for realizing 2.65Gbps by utilizing two circular polarizations. We have developed an on-board X-band transmitter, an on-board dual circularly polarized-wave antenna, and a ground station. In the on-board transmitter, we optimized the bias conditions of GaN High Power Amplifier (HPA) to linearize AM-AM performance. We have also designed and fabricated a dual circularly polarized-wave antenna for low-crosstalk polarization multiplexing. The antenna is composed of a corrugated horn antenna and a septum-type polarizer. The antenna achieves Cross Polarization Discrimination (XPD) of 37-43dB in the target X-band. We also modify an existing 10m ground station antenna by replacing its primary radiator and adding a polarizer. We put the polarizer and Low Noise Amplifiers (LNAs) in a cryogenic chamber to reduce thermal noise. Total system noise temperature of the antenna is 58K (maximum) for 18K physical temperature when the angle of elevation is 90° on a fine winter day. The dual circularly polarized-wave ground station antenna has 39.0dB/K of Gain - system-noise Temperature ratio (G/T) and an XPD higher than 37dB. The downlinked signals are stored in a data recorder at the antenna site. Afterwards, we decoded the signals by using our non-real-time software demodulator. Our system has high frequency efficiency with a roll-off factor α=0.05 and polarization multiplexing of 64APSK. The communication bits per hertz corresponds to 8.41bit/Hz (2.65Gbit/315MHz). The system is demonstrated in orbit on board the RAPid Innovative payload demonstration Satellite (RAPIS-1). RAPIS-1 was launched from Uchinoura Space Center on January 19th, 2019. We decoded 1010 bits of downlinked R- and L-channel signals and found that the downlinked binary data was error free. Consequently, we have achieved 2.65Gbps communication speed in the X-band for earth observation satellites at 300 Mega symbols per second (Msps) and polarization multiplexing of 64APSK (coding rate: 4/5) for right- and left-hand circular polarizations.

61-80hit(1385hit)