1-16hit |
Satoshi TANAKA Takeshi YOSHIDA Minoru FUJISHIMA
L-type LC/CL matching circuits are well known for their simple analytical solutions and have been applied to many radio-frequency (RF) circuits. When actually constructing a circuit, parasitic elements are added to inductors and capacitors. Therefore, each L and C element has a self-resonant frequency, which affects the characteristics of the matching circuit. In this paper, the parallel parasitic capacitance to the inductor and the series parasitic inductor to the capacitance are taken up as parasitic elements, and the details of the effects of the self-resonant frequency of each element on the S11, voltage standing wave ratio (VSWR) and S21 characteristics are reported. When a parasitic element is added, each characteristic basically tends to deteriorate as the self-resonant frequency decreases. However, as an interesting feature, we found that the combination of resonant frequencies determines the VSWR and passband characteristics, regardless of whether it is the inductor or the capacitor.
With the spread of the 5th generation mobile phone, the increase of the output power of PA (power amplifier) has become important, and in recent years, differential amplifiers that can increase the output voltage amplitude for the power supply voltage have been examined from the viewpoint of power synthesis. In the case of a differential PA, in addition to the advantage of voltage amplitude, the load impedance can be set 4 times as much as that of a single-ended PA, which makes it possible to reduce the impact of parasitic resistance. With the study of the differential PA, many transformer matching circuits have been studied in addition to the LC matching circuits that have been widely used in the past. The transformer matching circuit can easily realize the differential-single conversion, and the transformer matching circuit is an indispensable technology in the differential PA. As with the LC matching circuit, widening the bandwidth of the transformer matching circuit is at issue. In this paper, characteristics of basic transformer matching circuits are analyzed by adding input/output shunt capacitance to transformers and the conditions of bandwidth improvement are clarified. In addition, by comparing the FBW (fractional bandwidth) with the LC 2-stage matching circuit, it is shown that the FBW can be competitive.
As a mobile phone progresses with the third, fourth, and fifth generations, the frequency bands used in mobile phones are increasing dramatically. RF components for mobile phone terminals correspond to this increasing frequency band. In the case of power amplifier (PA), which is one of the RF components, it is necessary to correspond many frequency bands in one PA. In this case, the wideband of the matching circuit is a typical one of the technical problems of PA. In this study, we focus on two-stage and three-stage connections of LC ladder matching circuits widely applied in PA, and compare them from the viewpoint of broadband. In order to efficiently analyze multi-stage LC-matching circuits, the following two new methods were devised. First, we derived the analysis formula of LC and CL-matching circuits when the termination impedance was extended to a complex number. Second, we derived a condition in which the frequency derivative of the input impedance is zero.
Shinpei OSHIMA Hiroto MARUYAMA
In this paper, we propose a design method for a diplexer using a surface acoustic wave (SAW) filter, a multilayer ceramic filter, chip inductors, and chip capacitors. A controllable transmission zero can be created in the stopband by designing matching circuits based on the out-of-band characteristics of the SAW filter using this method. The proposed method can achieve good attenuation performance and a compact size because it does not use an additional resonator for creating the controllable transmission zero and the matching circuits are composed of only five components. A diplexer is designed for 2.4 GHz wireless systems and a global positioning system receiver using the proposed method. It is compact (8.0 mm × 8.0 mm), and the measurement results indicate good attenuation performance with the controllable transmission zero.
Matching circuits using LC elements are widely applied to high-frequency circuits such as power amplifier (PA) and low-noise amplifier (LNA). For determining matching condition of multi-stage matching circuits, this paper shows that any multi-stage LC-Ladder matching circuit with resistive termination can be decomposed to the extended L-type matching circuits with resistive termination containing negative elements where the analytical solution exists. The matching conditions of each extended L-type matching circuit are obtained easily from the termination resistances and the design frequency. By synthesizing these simple analysis solutions, it is possible to systematically determine the solution even in a large number of stages (high order) matching circuits.
Kota ASAKA Atsushi KANDA Akira OHKI Takeshi KUROSAKI Ryoko YOSHIMURA Hiroaki SANJOH Toshio ITO Makoto NAKAMURA Mikio YONEYAMA
By using impedance (Z) matching circuits in a low-cost transistor outline (TO) CAN package for a 10 Gb/s transmitter, we achieve a cost-effective and small bidirectional optical subassembly (BOSA) with excellent optical transmission waveforms and a > 40% mask margin over a wide temperature range (-10 to 85). We describe a design for Z matching circuits and simulation results, and discuss the advantage of the cost-effective compensation technique.
Ramesh Kumar POKHAREL Haruichi KANAYA Keiji YOSHIDA
This Letter employs transmission-line theory for the impedance-matching circuits for a single-chip power amplifier (PA) and verifies for 5 GHz-band wireless LAN (IEEE 802.11a) applications. The presented matching circuits are composed of conductor-backed coplanar waveguide (CPW) meander-line resonators and impedance (K) inverters. One of the advantages of the presented circuits is that it can save on-chip space occupied by the matching circuits compared to that using the spiral inductors, thus reducing the cost. The prototype chip, which consists of PA and matching circuits, is designed employing the presented theory and fabricated. A few of the measured results to verify the design theory are presented.
Minoru NAGATA Hideaki MASUOKA Shin-ichi FUKASE Makoto KIKUTA Makoto MORITA Nobuyuki ITOH
A fully integrated 5.8 GHz ETC transceiver LSI has been developed. The transceiver consists of LNA, down-conversion MIX, ASK detector, ASK modulator, DA VCO, and ΔΣ-fractional-N PLL. The features of the transceiver are integrated matching circuitry for LNA input and for DA output, ASK modulator with VGA for local signal control to avoid local leakage and to keep suitable modulation index, and LO circuitry consisting of ΔΣ-fractional-N PLL and interference-robust ∞-shape inductor VCO to diminish magnetic coupling from any other circuitry. Use of these techniques enabled realization of the input and output VSWR of less than 1.25, modulation index of over 95%, and enough qualified TX signals. This transceiver was manufactured by 1P3M SiGe-BiCMOS process with 47 GHz cut-off frequency.
Haruichi KANAYA Ramesh K. POKHAREL Fuminori KOGA Keiji YOSHIDA
Recently, spiral inductors have widely been used instead of resistors in the design of matching circuits to enhance the thermal noise performance of a wireless transceiver. However, such elements usually have low quality factor (Q) and may encounter the self-resonance in microwave-frequency band which permits its use in higher frequencies, and on the other hand, they occupy the large on-chip space. This paper presents a new design theory for the impedance-matching circuits for a single-chip SiGe BiCMOS receiver front-end for 2.4 GHz-band wireless LAN (IEEE 802.11b). The presented matching circuits are composed of conductor-backed coplanar waveguide (CPW) meander-line resonators and impedance (K) inverter. The prototype front-end receiver is designed, fabricated and tested. A few of the measured results to verify the design theory are presented.
Keiji YOSHIDA Yukako TSUTSUMI Haruichi KANAYA
In order to reduce the size of a wireless system, we propose a design theory for the broadband impedance matching circuit which connects an electrically small antenna (ESA) to a semiconductor amplifier. We confirmed its validity for the case of connection between a small slot loop antenna with a small radiation resistance of Ra =0.776 Ω and a semiconductor amplifier with high input impedance of ZL =321-j871 Ω with the aid of the simulations by the electrical circuits using transmission lines as well as the electromagnetic field (EM field) simulator. We also made experiments on this antenna with matching circuits using high temperature superconductor YBCO thin films on MgO substrates.
In this paper, we present the classification of small antennas based on statistical data. The three categories of downsizing methods are loading a matching circuit, changing the current path, and using dielectric/magnetic materials. These categories are explained using several examples. In this paper, we show that the miminum Q value as a fundamental limit defined by an infinitesimal dipole is effective for determining the index factor of small antennas. Radiation efficiency measurements for small antennas are also discussed.
Haruichi KANAYA Yoko KOGA Jun FUJIYAMA Go URAKAWA Keiji YOSHIDA
As an RF high Tc superconducting (HTS) front end for a microwave receiver, we propose a new design method for the broadband matching circuit composed of coplanar waveguide (CPW) meanderline resonators connecting a slot antenna with CMOS low noise amplifier (LNA). The parameters of the antenna sections with matching circuit are calculated and simulated with the circuit simulator and electromagnetic field simulator. CMOS LNA was designed and its input and output impedances and noise figure were obtained by SPICE simulation.
Hiromitsu UCHIDA Masatoshi NII Norio TAKEUCHI Yoshihiro TSUKAHARA Moriyasu MIYAZAKI Yasushi ITOH
A novel compact T/R (Transmit/Receive) switching circuit for wideband T/R modules has been proposed. It employs quadrature couplers and gate-and-drain-driven HPAs to remove circulators or T/R switches from a conventional T/R module, and T/R switching is made with controlling biasing conditions of the FETs in HPAs. Furthermore, an optimum biasing condition and design of output matching circuit of the HPA have been studied to reduce loss in RX-mode, and the validity of the method has been confirmed by measurements.
Yoshinori UZAWA Akira KAWAKAMI Zhen WANG Takashi NOGUCHI
A quasi-optical Superconductor-Insulator-Superconductor (SIS) mixer has been designed and tested in the 270-GHz band. The mixer used a substrate-lens-coupled log-periodic antenna and a tuning circuit for RF matching. The antenna is planar and self-complementary, and has a frequency-independent impedance of around 114 Ω over several octaves. The tuning circuit consists of two Nb/AIOx/Nb tunnel junctions separated by inductance for tuning out the junction capacitances and a λ/4 impedance transformer for matching the resistance of the two-junction circuit to the antenna impedance. The IF output from the mixer is brought out in a balanced method at each edge of the antenna, and is coupled to a low noise amplifier through a balun transformer using a 180-degree hybrid coupler for broadband IF matching. Double sideband receiver noise temperatures, determined from experimental Y-factor measurements, are about 150 K across the majority of the desired operating frequency band. The minimum receiver noise temperature of 120 K was measured at 263 GHz, which is as low as that of waveguide receivers. At this frequency, measurement of the noise contribution to the receiver results in input losses of 90 K, mixer noise of 17 K, and multiplied IF noise of 13 K. We found that the major sources of noise in our quasi-optical receiver were the optical losses.
Toshiaki KOIZUMI Kumio TAKAHASHI Shun SUZUKI Hideaki SONE Yoshiaki NEMOTO
This paper discusses the design of a small sensing device for EMI measurement which has equivalent characteristics to the absorbing clamp method, and reports the results on evaluation of the device. The device can be applied to the inspection apparatus for products such as power tools to examine conformance to EMI regulations of electromagnetic radiation spectrum. For reducing the scale of the EMI inspection apparatus, new matching circuit being replaced with the absorbing clamp method is adopted in the sensing device. Length of the sensing device is smaller than one twelfth of a wavelength of the measuring frequency in order to regard the sensing device as a concentrated constant circuit. The matching circuit is a resonant circuit which consists of a coaxial coupled transformer and a variable capacitor, and the transformer is a spiral copper tube in which a pair of AC power line wires passes. Resonant frequency of the circuit is tuned to the measuring frequency by adjusting the variable capacitor so that the circuit would terminate the power line by impedance zero. Thus interference current propagating along the power line from a product is absorbed, and observed by means of a VHF current probe which is settled in the matching circuit. A simple circuit for measurement of noise amplitude distribution (NAD) of interference current was developed as well as an equation to estimate quasi-peak value from the NAD. Result of measurement by the sensing device and proposed procedure confirmed good correlation with the standard absorbing clamp method, and deviation was within 3dB. Measurement time was reduced to 25 s per product, and the in-line EMI checker with new sensing device can be employed in a mass production line.
Naobumi SUZUKI Yasuhiro NAGAI Keiichiro ITOH Osamu MICHIKAMI
This paper describes the structure and properties of superconductive small antennas with thin-film matching circuits. These circuits make it possible to realize small antennas, 38 mm20 mm16 mm in size. This is one quarter the length of our previously reported ceramic antennas. The actual gain of this antennas was -4.5 dBi at 470 MHz. This value is 5.5 dB higher than that of Cu antennas with exactly the same structure.