The search functionality is under construction.

Keyword Search Result

[Keyword] matching network(11hit)

1-11hit
  • Effects of Parasitic Elements on L-Type LC/CL Matching Circuits Open Access

    Satoshi TANAKA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    PAPER

      Pubricized:
    2023/11/07
      Vol:
    E107-A No:5
      Page(s):
    719-726

    L-type LC/CL matching circuits are well known for their simple analytical solutions and have been applied to many radio-frequency (RF) circuits. When actually constructing a circuit, parasitic elements are added to inductors and capacitors. Therefore, each L and C element has a self-resonant frequency, which affects the characteristics of the matching circuit. In this paper, the parallel parasitic capacitance to the inductor and the series parasitic inductor to the capacitance are taken up as parasitic elements, and the details of the effects of the self-resonant frequency of each element on the S11, voltage standing wave ratio (VSWR) and S21 characteristics are reported. When a parasitic element is added, each characteristic basically tends to deteriorate as the self-resonant frequency decreases. However, as an interesting feature, we found that the combination of resonant frequencies determines the VSWR and passband characteristics, regardless of whether it is the inductor or the capacitor.

  • Broadband High Efficiency Power Amplifier with Compact Matching Network

    Weirong WANG  Guohua LIU  Zhiwei ZHANG  Zhiqun CHENG  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/03/10
      Vol:
    E104-C No:9
      Page(s):
    467-470

    This letter proposes a power amplifier (PA) with compact matching network. This structure is a parallel dual radial microstrip line in the output matching network branch. The input impedance expression based on the structure is deduced through theoretical analysis, and the load impedance that satisfies the class EFJ PA is obtained through the impedance expression. Compared with the traditional design method, this design method is simple and novel, and the structure is more compact. In order to further improve efficiency and expand bandwidth, the input matching network adopts a stepped impedance matching method. In order to verify the correctness of the design, a broadband high-efficiency PA was designed using GaN HEMT CGH40010F. The test results show that the drain efficiency is 61%-71% in the frequency band 1.4-3.8GHz, the saturated output power is 40.3-41.8dBm, and the size is 53×47mm2.

  • Generative Moment Matching Network-Based Neural Double-Tracking for Synthesized and Natural Singing Voices

    Hiroki TAMARU  Yuki SAITO  Shinnosuke TAKAMICHI  Tomoki KORIYAMA  Hiroshi SARUWATARI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    639-647

    This paper proposes a generative moment matching network (GMMN)-based post-filtering method for providing inter-utterance pitch variation to singing voices and discusses its application to our developed mixing method called neural double-tracking (NDT). When a human singer sings and records the same song twice, there is a difference between the two recordings. The difference, which is called inter-utterance variation, enriches the performer's musical expression and the audience's experience. For example, it makes every concert special because it never recurs in exactly the same manner. Inter-utterance variation enables a mixing method called double-tracking (DT). With DT, the same phrase is recorded twice, then the two recordings are mixed to give richness to singing voices. However, in synthesized singing voices, which are commonly used to create music, there is no inter-utterance variation because the synthesis process is deterministic. There is also no inter-utterance variation when only one voice is recorded. Although there is a signal processing-based method called artificial DT (ADT) to layer singing voices, the signal processing results in unnatural sound artifacts. To solve these problems, we propose a post-filtering method for randomly modulating synthesized or natural singing voices as if the singer sang again. The post-filter built with our method models the inter-utterance pitch variation of human singing voices using a conditional GMMN. Evaluation results indicate that 1) the proposed method provides perceptible and natural inter-utterance variation to synthesized singing voices and that 2) our NDT exhibits higher double-trackedness than ADT when applied to both synthesized and natural singing voices.

  • Simultaneous Decoupling and Matching Technique for Short-Range MIMO

    Kentaro MURATA  Naoki HONMA  Kentaro NISHIMORI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:8
      Page(s):
    1846-1858

    This paper presents a novel simultaneous decoupling and matching technique for transmitting (Tx) and receiving (Rx) ports in short-range multiple-input multiple-output (SR-MIMO) systems. The principal difference with conventional decoupling and matching network (DMN) approaches is that the proposed technique considers strong mutual coupling between closely-positioned Tx/Rx arrays, and the S-parameter variation due to the presence of each other's array. This technique has two stages; first, 180-degree hybrid couplers are connected to both Tx/Rx ports of a plane-symmetrical MIMO system. This decouples both Tx/Rx ports, and moreover, channels between them are orthogonalized. That is, the MIMO system is transformed into multi orthogonalized single-input single-output (SISO) systems. Second, Tx/Rx ports of each orthogonalized SISO system are simultaneously matched based on conjugate matching theory. Consequently, the transmission power of the short-range MIMO system is maximized. Numerical results show that the proposed technique realizes higher channel capacity than the conventional DMN; indeed it achieves the theoretically possible capacity. In addition to theoretical analyses, we provide an example for microstrip line (MSL) circuit implementation. This MSL model offers good simultaneous decoupling and matching performance yielding channel capacity comparable to that of an ideally-designed circuit model. This validates the implementation feasibility of the proposed technique.

  • Low-Loss Matching Network Design for Band-Switchable Multi-Band Power Amplifier Open Access

    Atsushi FUKUDA  Takayuki FURUTA  Hiroshi OKAZAKI  Shoichi NARAHASHI  Toshio NOJIMA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1172-1181

    This paper presents a novel design scheme for a band-switchable multi-band power amplifier (BS-MPA). A key point of the design scheme is configuring multi-section reconfigurable matching networks (MR-MNs) optimally in terms of low loss matching in multiple frequency bands from 0.7 to 2.5 GHz. The MR-MN consists of several matching sections, each of which has a matching block connected to a transmission line via a switch. Power dissipation at an actual on-state switch results in the insertion loss of the MR-MN and depends on how the impedance is transformed by the MR-MN. The proposed design scheme appropriately transforms the impedance of a high power transistor to configure a low loss MR-MN. Numerical analyses show quantitative improvement in the loss using the proposed scheme. A 9-band 3-stage BS-MPA is newly designed following the proposed scheme and fabricated on a multi-layer low temperature co-fired ceramic substrate for compactness. The BS-MPA achieves a gain of over 30 dB, an output power of greater than 33 dBm and a power added efficiency of over 40% at the supply voltage of 4 V in each operating band.

  • Design of a Wideband UHF RFID Printed Tag Antenna Using the R2R Process

    Uisheon KIM  Gyubong JUNG  Jaehoon CHOI  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:8
      Page(s):
    2135-2141

    This paper proposes a printed tag antenna for the universal ultra-high frequency (UHF) radio frequency identification (RFID) band (860-960 MHz) using the R2R process. To widen impedance bandwidth, a π-shaped matching network is suggested. The overall dimension of the proposed tag antenna is 83.4 mm 30.2 mm and it has a gain of over 1 dBi for the entire UHF RFID band. The performances of the proposed tag antenna, printed with conductivity silver ink using an R2R process, are compared with those of a copper antenna.

  • Highly Efficient Multi-Band Power Amplifier Employing Reconfigurable Matching and Biasing Networks

    Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    949-957

    This paper presents a highly efficient multi-band power amplifier (PA) with a novel reconfigurable configuration. It consists of band-switchable matching networks (BS-MNs) and a biasing network (BS-BN) that are available for multi-band operation. BS-MNs with a susceptance block (SB) require a shorter transmission line (TL) than those without the SB at some target impedances. This paper theoretically derives the relationships of the required TL lengths for the BS-MN with or without the SB and the target impedances. The required TL lengths at the target impedances are evaluated numerically in order to discuss the advantages of the proposed configuration. The BS-BN employing switches for band switching can supply DC power to an amplification device without additional DC power dissipation because the DC bias current does not flow through the switches. Numerical analyses confirm that a BS-BN can be configured with low loss in multiple bands. Based on the proposed configuration, a 1/1.5/1.9/2.5-GHz quad-band reconfigurable PA is designed and fabricated employing RF microelectro mechanical systems switches and partitioned low temperature co-fired ceramics substrates. The fabricated 1 W-class PA achieves a high output power of greater than 30 dBm and a maximum power added efficiency of over 40% in all operating modes.

  • Band-Broadening Design Technique of CRLH-TLs Dual-Band Branch-Line Couplers Using CRLH-TLs Matching Networks

    Tadashi KAWAI  Miku NAKAMURA  Isao OHTA  Akira ENOKIHARA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1072-1077

    This paper treats a band-broadening design technique of a dual-band branch-line coupler with matching networks composed of an impedance step and a short-circuited stub based on the equivalent admittance approach. By replacing each right-handed transmission line (RH-TL) with a composite right/left-handed transmission line (CRLH-TL), very flat couplings over a relative bandwidth of about 10% can be obtained at two arbitrary operating frequencies in comparison with previous CRLH-TLs branch-line couplers. Furthermore, by adding periodical open-circuited stubs into RH-TLs of the designed CRLH-TLs branch-line coupler with matching networks, the entire size of the coupler can be reduced to about 50%. Verification of these band-broadening and size-reduction design techniques can be also shown by an electromagnetic simulation and experiment.

  • Improvements in the Design of Matrix Distributed Amplifiers

    Emad HAMIDI  Mahmoud MOHAMMAD-TAHERI  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:6
      Page(s):
    861-864

    A simple method for the gain improvement of matrix distributed amplifiers is presented. The method is based on modifying the central transmission line of the matrix amplifier without any changes in the input and output transmission lines. In the new method the termination impedances in the central transmission line are modified and the transmission line is replaced by an impedance matching circuitry. It has been shown that the new method can significantly improve the gain while preserving the input and output return losses of the amplifier.

  • Reconfigurable CMOS Mixer for Multi-Standard Applications

    Young-Kyun JANG  Ji-Hoon KIM  Hyung-Joun YOO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:12
      Page(s):
    2379-2381

    A reconfigurable CMOS mixer for multi-standard application is presented. The mixer can be tuned and adjusted to multi-frequency bands using a flexible matching network which is a kind of variable reactance transformer. The flexible matching network consists of a few switched inductors and capacitors. The mixer has acceptable conversion gain, IIP3 and NF. It operates with a return loss of less than -10 dB through 2-6 GHz except for a few narrow frequency bands.

  • Novel Band-Reconfigurable High Efficiency Power Amplifier Employing RF-MEMS Switches

    Atsushi FUKUDA  Hiroshi OKAZAKI  Tetsuo HIROTA  Yasushi YAMAO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:11
      Page(s):
    2141-2149

    A novel scheme for a multi-band power amplifier (PA) that employs a low-loss reconfigurable matching network is presented and discussed. The matching network basically consists of a cascade of single-stub tuning circuits, in which each stub is connected to a transmission line via a Single-Pole-Single-Throw (SPST) switch. By controlling the on/off status of each switch, the matching network works as a band-switchable matching network. Based on a detailed analysis of the influence of non-ideal switches in the matching network, we conceived a new design perspective for the reconfigurable matching network that achieves low loss. A 900/1900-MHz dual-band, 1 W class PA is newly designed following the new design perspective, and fabricated with microelectro mechanical system (MEMS) SPST switches. Owing to the new design and sufficient characteristics of the MEMS switches, the dual-band PA achieves over 60% of the maximum power-added efficiency with an output power for each band exceeding 30 dBm. These results are comparable to the estimated results for a single-band PA. This shows that the proposed scheme provides a band-switchable highly efficient PA that has superior performance compared to the conventional multi-band PA that has a complex structure.