Hisahiro SASABE Masatoshi ISHIBA Yong-Jin PU Junji KIDO
We designed and synthesized alkoxyphenyl group containing starburst host materials 1. Using 1 as a host material, efficient phosphorescent OLEDs with the power efficiencies of 32 lm W-1 for blue, and 85 lm W-1 for green at 100 cd m-2 were developed.
The waveguide-penetration method is a method to measure the electrical properties of materials. In this method, a cylindrical object pierces a rectangular waveguide through a pair of holes at the centre of its broad walls. Then, the complex permittivity and permeability of the object are estimated from measured S-parameters after TRL calibration. This paper proposes a new calibration algorithm for the waveguide-penetration method. Reference materials with known electrical properties are fabricated in cylindrical shapes to fit into the holes in the waveguide and are used as calibration standards. The algorithm is formulated using the property of equal traces in similar matrices, and we show that at least two reference materials are needed to calibrate the system. The proposed algorithm yields a simpler means of calibration compared to TRL and is verified using measurements in the S-band. Also, the error sensitivity coefficients are derived. These coefficients give valuable information for the selection of reference materials.
Jing LI Zhiying MA Jianming LI Lizhan XU
Using a self-developed ASTM test system of contact material electrical properties under low voltage (LV), small-capacity, the current-frequency variable and a photoelectric analytical balance, the electric performance comparison experiments and material weighing of silver-based electrical contact materials, such as silver/tungsten and silver/cadmium oxide contact materials, are completed under LV, pure resistive load and small current at 400 Hz/50 Hz. The surface profiles and constituents of silver/tungsten contact material were observed and analyzed by SEM and EDAX. Researches indicate that the form of the contact material arc burnout at 400 Hz is stasis, not an eddy flow style at 50 Hz; meanwhile, the area of the contact burnout at 400 Hz is less than that of 50 Hz, and the local ablation on the surface layer at 400 Hz is more serious. Comparing the capacities of the silver-based contact materials with different second element such as CAgW50, CAgNi10, CAgC4 and CAgCdO15 at 400 Hz, no matter what the performances of arc erosion resistance or welding resistance, it can be found that the capacities of the silver/tungsten material is the best.
Zunchao LI Jinpeng XU Linlin LIU Feng LIANG Kuizhi MEI
The asymmetrical halo and dual-material gate structure is used in the surrounding-gate metal-oxide-semiconductor field effect transistor (MOSFET) to improve the performance. By treating the device as three surrounding-gate MOSFETs connected in series and maintaining current continuity, a comprehensive drain current model is developed for it. The model incorporates not only channel length modulation and impact ionization effects, but also the influence of doping concentration and vertical electric field distributions. It is concluded that the device exhibits increased current drivability and improved hot carrier reliability. The derived analytical model is verified with numerical simulation.
Tie Jun CUI Xiao-Yang ZHOU Xin Mi YANG Wei Xiang JIANG Qiang CHENG Hui Feng MA
We present a review of several types of microwave antennas made of metamaterials, including the resonant electrically small antennas, metamaterial-substrate patch antennas, metamaterial flat-lens antennas, and Luneburg lens antennas. In particular, we propose a new type of conformal antennas using anisotropic zero-index metamaterials, which have high gains and low sidelobes. Numerical simulations and experimental results show that metamaterials have unique properties to design new antennas with high performance.
The nanoporosity installed in conjugated polymer films prepared by electrophoretic deposition makes it difficult to measure the amount of polymer deposited on a substrate. Here, an alternative approach, the estimation of material efficiency of the electrophoretic deposition from the optical absorption spectra of the residual suspensions has been studied. The ultimate recovery rate, which becomes smaller in suspensions with lower acetonitrile content, does not depend on the deposition voltage. The light scattering by the colloidal particles seems to be absent in residual suspensions after a deposition long enough to reach the ultimate recovery rate, indicating the exhaustion of the colloidal particles. Although the deposition rate of the polymer markedly lowers upon coating of the deposition electrode with PEDOT, the ultimate recovery rate remains unchanged. These results suggest that the material efficiency in this deposition method is limited by the generation rate of the colloidal particles in the suspension.
Sarawuth CHAIMOOL Kwok L. CHUNG Prayoot AKKARAEKTHALIN
Bandwidth and gain enhancement of microstrip patch antennas (MPAs) is proposed using reflective metasurface (RMS) as a superstrate. Two different types of the RMS, namely- the double split-ring resonator (DSR) and double closed-ring resonator (DCR) are separately investigated. The two antenna prototypes were manufactured, measured and compared. The experimental results confirm that the RMS loaded MPAs achieve high-gain as well as bandwidth improvement. The desinged antenna using the RMS as a superstrate has a high-gain of over 9.0 dBi and a wide impedance bandwidth of over 13%. The RMS is also utilized to achieve a thin antenna with a cavity height of 6 mm, which is equivalent to λ/21 at the center frequency of 2.45 GHz. At the same time, the cross polarization level and front-to-back ratio of these antennas are also examined.
Seongmin PYO Min-Jae LEE Young-Sik KIM
In this letter, a new design of a metamaterial-based microstrip antenna is presented using triangular slots embedded on the ground plane to enhance the impedance bandwidth. To improve the impedance bandwidth of the proposed antenna, two resonant mode frequencies are closely allocated using the slotted ground without changing the radiator element. The impedance bandwidth of VSWR < 2.5 is measured at 2.43 GHz (37.6%) centered on 6.46 GHz, from 5.24 GHz to 7.67 GHz in good agreements with the simulated results.
Yujiro KUSHIYAMA Toru UNO Takuji ARIMA
This paper proposes a novel metamaterial structure, which equivalently indicates negative permittivity, for the purpose of applying it to a near-field imaging and/or diagnostics of electromagnetic properties by using a surface plasmon in microwave frequency range. The proposed structure consists of a conducting wire lattice with conducting spheres embedded at the mid-point of the wire. It is shown that a spatial dispersion of the wire lattice can be reduced significantly by the sphere. It is also shown that this structure can successfully be applied to an excitation of the surface plasmon in the microwave frequency range by adequately cutting into a thin slab.
Ken HORIKAWA Tetsuya UEDA Masahiro AKIYAMA
Beam steering of leaky wave radiation from a nonreciprocal composite right/left handed transmission line with a ferrite substrate is proposed. The nonreciprocal phase constants of the line were tuned by changing the applied DC magnetic field normal to the ferrite substrate. In the numerical simulation and the experiment, the nonreciprocal phase characteristics and leaky wave radiation are investigated for the ferrite substrate with the magnetization not only in the saturated region, but also in the unsaturated region. The numerical simulation results are in good agreement with the measurement. It is confirmed that the beam directions of the obliquely unidirectional leaky wave radiation for two different power directions are continuously tunable.
Hiroki WAKATSUCHI Stephen GREEDY John PAUL Christos CHRISTOPOULOS
This paper demonstrates an efficient modelling method for artificial materials using digital filtering (DF) techniques. To demonstrate the efficiency of the DF technique it is applied to an electromagnetic bandgap (EBG) structure and a capacitively-loaded loop the so-called, CLL-based metamaterial. Firstly, this paper describes fine mesh simulations, in which a very small cell size (0.10.10.1 mm3) is used to model the details of an element of the structures to calculate the scattering parameters. Secondly, the scattering parameters are approximated with Padé forms and then factorised. Finally the factorised Padé forms are converted from the frequency domain to the time domain. As a result, the initial features in the fine meshes are effectively embedded into a numerical simulation with the DF boundary, in which the use of a coarse mesh is feasible (1,000 times larger in the EBG structure simulation and 680 times larger in the metamaterial simulation in terms of the volumes). By employing the coarse mesh and removal of the dielectric material calculations, the heavy computational burden required for the fine mesh simulations is mitigated and a fast, efficient and accurate modelling method for the artificial materials is achieved. In the case of the EBG structure the calculation time is reduced from 3 hours to less than 1 minute. In addition, this paper describes an antenna simulation as a specific application example of the DF techniques in electromagnetic compatibility field. In this simulation, an electric field radiated from a dipole antenna is enhanced by the DF boundary which models an artificial magnetic conductor derived from the CLL-based metamaterial. As is shown in the antenna simulation, the DF techniques model efficiently and accurately large-scale configurations.
Masaya TAMURA Toshio ISHIZAKI Mohammed Reza M. HASHEMI Tatsuo ITOH
In this paper, a resonator based on composite right/left handed transmission line concept is discussed. This resonator excites --1st order resonance mode. We start with half-wave resonators consisting of two unit cells of a composite right/left handed transmission line. From the simulated field distributions, the center of these half-wave resonators can be short-circuited to obtain a quarter-wave resonator in the --1st mode. Susceptance slope parameters are calculated for the resonator. Then this resonator is applied for a 2-pole filter made by LTCC, which can be designed with standard filter design theory owing to the slope parameter. The dimension of the experimental filter implemented by LTCC is 2.5 mm by 1.35 mm by 0.52 mm. The insertion loss is 1.80 dB at the 2.4 GHz band. Good agreement between measured and computed results is obtained.
A composite right/left-handed (CRLH) transmission line with demultiplexing property is proposed towards short-range functional wireless interconnects. The CRLH line is designed by analyzing dispersion relation of the microstrip line having a split-ring and a double-stub structure to realize frequency selective properties for leaky wave radiation. A prototype device is fabricated and estimated to study feasibility of the demultiplexing operation around ten GHz.
Masashi HOTTA Ryota OGAWA Mitsuo HANO
Existence of backward TE volume modes which are to be identified as Magnetostatic Wave (MSW) in anisotropic single-negative slab with partly negative permeability tensor component have already been revealed by present authors. In this paper, detailed modal analysis has been carried out for this kind of TE volume modes to find out their novel and peculiar properties. From these numerical results, it has been clarified that dispersion curve of the lowest order mode for thicker slab has a frequency of turning point below which both forward and backward waves can be simultaneously observed and also there is a critical slab thickness for each order of TE volume modes to exist.
Toru IWASAKI Hirokazu KAMODA Takao KUKI
A novel structure for a composite right/left-handed (CRLH) corrugated waveguide in the millimeter-wave band is proposed. The CRLH waveguide is composed of a rectangular waveguide with tilted corrugations on its bottom broad wall. By operating above and below the cutoff frequency of the dominant mode of the rectangular waveguide, the CRLH waveguide provides, respectively, an inherent series inductance and shunt capacitance, and an inherent shunt inductance. Moreover, the tilted corrugations provide a series inductance and a series capacitance, which can support CRLH propagation. A frequency-scanning antenna using this CRLH waveguide is also studied numerically and experimentally. The results demonstrate that the antenna can provide backward-to-forward beam scanning, including the broadside direction. A scanning angle from -9.9 to +2.2 is achieved within a 1.8-GHz frequency range in the 60-GHz band.
Based on provided convenient design equations for slow wave transmission lines and metamaterial line, a very compact rat-race hybrid coupler is proposed using three slow wave lines and one metamaterial line. At the design frequency of 2 GHz, the size of the proposed coupler is 2.3 cm2.7 cm, which is a 74% reduction compared with the conventional one. Despite the considerable size reduction, the theoretical bandwidths based on | S11|, | S31|, ∠ S21-∠ S31, and ∠ S24-∠ S34, have been improved by 9%, 7%, 31%, and 59%, respectively. The measured performances are in reasonable agreement with the theoretical ones.
Ako MIYAWAKI Toshiaki HAYASHI Masaki TANEMURA Yasuhiko HAYASHI Tomoharu TOKUNAGA Tetsuo SOGA
Ge surfaces were irradiated by Ar+ ions at 600 eV with and without simultaneous supply of Ge or Al at room temperature. The surfaces ion-irradiated without any simultaneous metal supply were characterized by densely distributed conical protrusions. By contrast, various kinds of nanostructures were formed on the Ge surfaces ion-irradiated with a simultaneous metal supply. They featured cones and nanobelts with a flattened top for Ge supply cases, whereas they were characterized by the nanorods, nanobelts and nanowalls for Al supply cases. Very interestingly, most of the nanorods and nanobelts formed with an Al supply possessed a bottleneck structure. Thus, the Ge nanostructures were controllable in morphology by species and amount of simultaneously supplied metals.
The characteristics of a left-handed traveling-wave transistor, which is formulated as two composite right- and left-handed (CRLH) transmission lines with both passive and active couplings, are discussed for generating unattenuated waves having left-handedness. The design criteria for convective instability are described, together with results of numerical calculations that solve the transmission equation for the device.
In the electromagnetic theory, the vacuum impedance Z0 is a universal constant, which is as important as the velocity of light c0 in vacuum. Unfortunately, however, its significance is not appreciated so well and sometimes the presence itself is ignored. It is partly because in the Gaussian system of units, which has widely been used for long time, Z0 is a dimensionless constant and of unit magnitude. In this paper, we clarify that Z0 is a fundamental parameter in electromagnetism and plays major roles in the following scenes: reorganizing the structure of the electromagnetic formula in reference to the relativity; renormalizing the quantities toward natural unit systems starting from the SI unit system; and defining the magnitudes of electromagnetic units.
Tatsunari HAMASAKI Taichiro MORIMUNE Hirotake KAJII Yutaka OHMORI
The characteristics of violet-sensitive organic photodetectors (OPDs) utilizing polyalkylfluorene and triplet materials have been studied as a host and a dopant material, respectively. For the photo absorption layer, poly(9,9-dioctylfluorene) [PFO] and a phosphorescent iridium complex (Iridium (III) bis(2-(4,6-difluorophenyl)pyridinato-N,C2) [FIrpic] or Iridium (III) bis(2-(2'-benzothienyl)pyridinato-N,C3')(acetyl-acetonate) [(btp)2Ir(acac)]) were used as a host and a dopant material, respectively. PFO: (btp)2Ir(acac) device showed less photocurrent than PFO device because (btp)2Ir(acac) enhances recombination of the photo generated carriers in the photo absorption layer. On the other hand, PFO : FIrpic device showed larger photocurrent than PFO device due to triplet energy transfer from FIrpic to PFO. A cutoff frequency of 20 MHz was observed using a sinusoidal modulated violet laser light illumination under the reverse bias of 8 V.