The search functionality is under construction.

Keyword Search Result

[Keyword] microwave photonics(20hit)

1-20hit
  • High-Power Photodiodes for Analog Applications Open Access

    Andreas BELING  Joe C. CAMPBELL  Kejia LI  Qinglong LI  Ye WANG  Madison E. WOODSON  Xiaojun XIE  Zhanyu YANG  

     
    INVITED PAPER

      Vol:
    E98-C No:8
      Page(s):
    764-768

    This paper summarizes recent progress on modified uni-traveling carrier photodiodes that have achieved RF output power levels of 1.8 Watt and 4.4 Watt in continuous wave and pulsed operation, respectively. Flip-chip bonded discrete photodiodes, narrowband photodiodes, and photodiodes integrated with antennas are described.

  • Generating UWB and Microwave Waveforms Using Silicon Photonics Open Access

    Lawrence R. CHEN  

     
    INVITED PAPER

      Vol:
    E98-C No:8
      Page(s):
    752-763

    We provide an overview of techniques for the photonic generation of arbitrary RF waveforms, particularly those suitable for impulse radio or multi-band ultrawideband (UWB)-over-fiber transmission, and chirped microwave waveforms, with an emphasis on microwave photonic filtering and optical spectral shaping followed by wavelength-to-time mapping. We discuss possibilities for integrating the various device and component technologies with silicon photonics.

  • Recirculating Frequency Shifter-Based Hybrid Electro-Optic Probing System with Ultra-Wide Bandwidth

    Benoît J. GOUHIER  Ka-Lun LEE  Ampalavanapillai NIRMALATHAS  Christina LIM  Efstratios SKAFIDAS  

     
    PAPER-MWP Sensing Technique

      Vol:
    E98-C No:8
      Page(s):
    857-865

    In this paper, we present a new electro-optic (EO) probing system based on heterodyne detection. The use of a recirculating frequency shifter allows to expand the bandwidth of the system far beyond what is attainable with a conventional heterodyne EO set-up. The performance for the frequencies up to 50GHz is analysed to forecast the viability of the system up to the THz range.

  • Compact Electro-Optic Single Sideband Modulators Utilizing Miniaturized Branch-Line Couplers on LiNbO3 Substrate

    Katsuyuki YAMAMOTO  Tadashi KAWAI  Akira ENOKIHARA  Tetsuya KAWANISHI  

     
    PAPER-MWP Device and Application

      Vol:
    E98-C No:8
      Page(s):
    769-776

    Optical single sideband (SSB) modulation with the Mach-Zehnder (MZ) interferometer was realized by integrating the modulation electrode with the branch-line coupler (BLC) as a 90-degree hybrid onto the modulator substrate. In this paper, BLCs of the microsrtip-line structure were miniaturized on modulator substrates, LiNbO3 (LN), to realize more compact optical SSB modulators. We introduced two techniques of miniaturizing the BLC, one is using periodically installed open-circuited stabs and the other is installing series capacitors. Compared with a conventional pattern of the BLC, an area of the miniaturized BLC by using periodically installed open-circuited stubs was reduced to about 50%, and that by installing series capacitors was done to about 60%. The operation of these miniaturized BLCs was experimentally confirmed as the 90-degree hybrid at around 10GHz. Output ports of each miniaturized BLC were directly connected with the modulation electrode on the modulator substrate. Thereby, we fabricated two types of compact SSB modulators for 1550nm light wavelength. In the experiments, the optical SSB modulation was successfully confirmed by the output light spectra and the sideband suppression ratio of more than 30dB were observed.

  • E- and W-Band High-Capacity Hybrid Fiber-Wireless Links

    J. J. VEGAS OLMOS  X. PANG  I. TAFUR MONROY  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1290-1294

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transmission over different type of optical fibers and for a number of values for the wireless link distance. Hybrid wireless-optical links can be composed of mature and resilient technology available off-the-shelf, and provide functionalities that can add value to optical access networks, specifically in mobile backhaul/fronthaul applications, dense distributed antenna systems and fiber-over-radio scenarios.

  • Cascaded Lithium Niobate Mach-Zehnder Optical SSB Modulators for Multi-Carrier Signals

    Koji KIKUSHIMA  Toshihito FUJIWARA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E90-C No:10
      Page(s):
    2012-2021

    This paper clarifies the sideband suppression ratio (SSR) value needed for multi-carrier signal modulation in an optical single sideband (SSB) modulator. An SSR value of about 25 dB is found to be sufficient for broadcast satellite (BS) multi-carrier signal modulation. For FM converted CATV signal modulation, an SSR value of about 10 dB is sufficient. In addition, the properties of cascaded lithium niobate Mach-Zehndar (LN MZ) optical SSB modulators are clarified to be better than those of the conventional single LN MZ optical SSB modulator with nearly the same SSR value of 27 dB.

  • FM Converted and SHF TV Signal Carrier Transmission by Using Lithium Niobate Mach-Zehnder Optical SSB Modulator

    Koji KIKUSHIMA  Toshihito FUJIWARA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E90-C No:9
      Page(s):
    1816-1822

    FM converted CATV and super high frequency satellite TV signal transmission using lithium niobate Mach-Zehnder optical SSB modulator is proposed and demonstrated. Simultaneous FM-converted 40 CATV signal carriers (from 93 to 375 MHz) and 104 super high frequency satellite TV signal carriers (from 11.7 to 20.2 GHz) could be transmitted with good noise properties and distortion quality over 40 km of dispersive SMF with chromatic dispersion of 680 ps/nm. We clarify the required phase and power values by experiments on the relationship between sideband suppression ratio (SSR) and the phase/power to LN MZ optical SSB modulator. For instance, the absolute value of phase and power should be less than 5 degrees and 0.4 dB, respectively, to obtain SSR values above 35 dB.

  • Microwave Photonic Mixer Utilizing an InGaAs Photoconductor for Radio over Fiber Applications

    Ho-Jin SONG  Tae-Woo KIM  Seong June JO  Chung-Hyun LIM  Kyoung-Hwan OH  Soo-Ghang IHN  Jong-In SONG  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    457-464

    A microwave photonic mixer utilizing an InGaAs photoconductor for radio over fiber applications is proposed and fabricated. Static and dynamic characteristics of the fabricated microwave photonic mixer were investigated. The microwave photonic mixer showed an optical bandwidth of approximately 300 MHz and a uniform conversion loss characteristic for the electrical input frequency up to 20 GHz.

  • Fourier Transform Optical Beamformer Employing Spatial Light Modulator

    Tomohiro AKIYAMA  Nobuyasu TAKEMURA  Hideyuki OH-HASHI  Syuhei YAMAMOTO  Masahito SATO  Tsutomu NAGATSUKA  Yoshihito HIRANO  Shusou WADAKA  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    465-473

    Optically controlled beam forming techniques are effective for phased-array antenna control. We have developed the Fourier transform optical beamformer (FT-OBF). The antenna radiation pattern inputted into an amplitude spatial light modulator (A-SLM) is optically Fourier transformed to a specific phase-front light beam equivalent to an antenna excitation in the FT-OBF. Optical signal processing, used the Fourier transform optics, is effective to large-scale, two-dimensional, and high-speed signal processing. To implement a flexible and finer antenna beam pattern control, we use an A-SLM as input image formation of the FT optics. And, to realize a small-size FT-OBF, we use symmetric triplet lenses with convex, concave and convex lens. The total optical system becomes below 1/5 length compared with the length using single lens. Finally, we evaluated the developed FT-OBF with the generated amplitude and phase distributions, which excitation signal of an array antenna. We measured an antenna radiation beam pattern, beam steering and beam width control, in the C-band. Measurement results agreed with theoretical calculated results. These results show the feasibility of the spatial light modulator based FT-OBF.

  • Direct Optical Injection Locking of a 100-GHz-Class Oscillator IC Using a Back-Illuminated InP/InGaAs HPT and Its Applications

    Hideki KAMITSUNA  Tsugumichi SHIBATA  Kenji KURISHIMA  Minoru IDA  

     
    INVITED PAPER-MWP Devices

      Vol:
    E86-C No:7
      Page(s):
    1290-1298

    This paper discusses direct optical injection locking of a millimeter-wave oscillator using an InP/InGaAs heterojunction phototransistor (HPT) and its applications. Previously reported optically injection-locked oscillators (OILOs) are reviewed first. In particular, the features of a direct OILO (DOILO), where synchronization can be achieved by illuminating the active oscillator device itself, are discussed in comparison with the indirect OILO. DOILOs with excellent characteristics require high-performance transistors having both a high maximum oscillation frequency and fast photoresponse. We have developed high-performance opto-microwave-compatible InP/InGaAs HPTs whose layer and fabrication process are fully compatible with ultrahigh-speed heterojunction bipolar transistors. The paper discusses the photocoupling structure, and it is shown that the back-illuminated structure with the aid of InP subcollector enables one to achieve a 100-GHz-class DOILO. The configuration and performance of the 100-GHz-class DOILO are then presented; in particular, injection locking from optical signals with a modulation or beat frequency of around the fundamental (96 GHz) or second harmonic (192 GHz) is successfully demonstrated. To our knowledge, 96 GHz is the highest optically injection-locked frequency and 192 GHz is the highest inputmodulation frequency reported for OILOs. The HPT oscillator IC promises compact, low-power-consumption remote local oscillators for 100-GHz-class wireless systems and 100-Gbit/s-class optoelectronic clock recovery circuits. In addition, when the HPT oscillator is used as a modulator, we can attain cost-effective millimeter-wave systems compatible with conventional optical fiber networks transmitting digitally modulated baseband signals.

  • Two-Stage Integrated SOA Modulators: A Novel Architecture for Efficient Photonic Mixers of Microwave Signals

    Salvador SALES  Jose CAPMANY  Beatriz ORTEGA  Daniel PASTOR  

     
    PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1263-1268

    Efficient mixing of microwave signals is an important issue for new radio over fiber telecommunications systems. In this paper, we propose a novel device based on two cascaded semiconductor optical amplifiers working in a non-linear regime and a loss section in between Results show potential performance improvement as compared to other technological approaches for photonic microwave mixers.

  • An Experimental Investigation of Interference Suppression in Direct Optical Switching CDM Radio-on-Fiber System

    Takeshi HIGASHINO  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER-Photonic Links for Wireless Communications

      Vol:
    E86-C No:7
      Page(s):
    1159-1166

    This paper describes the experimental approach of the Direct Optical Switching (DOS) CDM Radio-on-Fiber (RoF) system. Improved carrier-to-interference ratio (CIR) performance by using an Optical Polarity Reversing Correlator (OPRC) in comparison to using a single switch decoder is experimentally obtained. In addition, CIR performance deterioration due to degradation of the extinction ratio of the optical switch decoder is clarified from the theoretical and experimental viewpoints. Finally, we confirmed that CIR performance is improved more by using an M-sequence whose weight is even numbered than by using an odd numbered one.

  • Full-Duplex Transmission Using 2-RF-Port Electroabsorption Transceiver with Photonic Up- and Downconversions for Millimeter-Wave Radio-on-Fiber System

    Kensuke IKEDA  Toshiaki KURI  Yoshiro TAKAHASHI  Ken-ichi KITAYAMA  

     
    PAPER-Photonic Links for Wireless Communications

      Vol:
    E86-C No:7
      Page(s):
    1138-1145

    Full-duplex transmission of 60.0 GHz and 59.6 GHz millimeter-wave (mm-wave) signals of 155.52-Mbit/s differential phase shift keying (DPSK) data, radio-on-fiber (ROF) signals over 25-km-long standard single-mode fibers (SMFs) is experimentally demonstrated for the first time using a single 2-RF-port electroabsorption transceiver (EAT). The simplification of base stations (BSs) is strongly required to realize cost-effective and high-reliability mm-wave wireless access. This single EAT detects a C-band ROF signal modulated by a mm-wave downlink signal and simultaneously modulates the L-band optical carrier by a mm-wave uplink signal. The BS mainly consists of the EAT, leading to a simple and low-cost BS. Optical pilot tones and optical bandpass filters are used for photonic downconversion and photonic upconversion, to convert frequencies between mm-wave signals and intermediate frequency (IF) signals in the optical domain. With the use of optical conversions, these signals have no significant fading problems. The simultaneous transmission of both up- and downlinks has been achieved with the BER of less than 10-9. Also the fading problems due to the fiber dispersion of photonic conversions are analyzed mathematically in this paper. The single-EAT BS will become a promising candidate for a ROF access system.

  • Demonstration and Analysis of Single Sideband Photonic Time-Stretch System

    Yan HAN  Bahram JALALI  Jeehoon HAN  Byoungjoon SEO  Harold FETTERMAN  

     
    PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1276-1280

    We report on the first demonstration of single sideband (SSB) modulated time stretch system. In addition, we present an analytical model relating the system performance to the phase and amplitude mismatches in the SSB modulator. The results show that, fortuitously, the system is tolerant to such mismatches. In particular, using commercially available components,the dispersion induced power penalty can be kept below 2.5 dB over 4-20 GHz bandwidth for any stretch factor. The experiments demonstrate 120 Gsample/s real-time capture of a 20 GHz SSB-modulated microwave signal.

  • High-Temperature Superconductive Photomixer Patch Antenna: Theory and Design

    Daryoosh SAEEDKIA  A. Hamed MAJEDI  S. SAFAVI-NAEINI  Raafat R. MANSOUR  

     
    PAPER-MWP Devices

      Vol:
    E86-C No:7
      Page(s):
    1318-1327

    This paper presents a novel mm-wave and THz device concept, with a detailed physical modeling and quantitative performance evaluation, called as CW HTS (high temperature superconductive) photomixer/antenna. Optical heterodyne photomixing in the DC-biased HTS strip has been employed to create mm-wave and THz signal, and the size of strip on the grounded dielectric substrate is designed to have an efficient broadside radiation. Incorporating the HTS microstrip configuration as both photomixing media and radiation element at the same time not only increases the CW photocurrent but also the radiation power, while it reduces the radiation loss associated with the patch antenna. Two possible configurations called as longitudinal and transversal will be introduced and their photomixing efficiency and output radiation power will be compared. The detailed analysis along with the optimum design of the geometrical parameters of the microstrip structure shows that the transversal scheme exhibits higher radiation power. The typical nW output power can be obtained by mW laser pump power for frequencies up to the gap frequency of the HTS material. The output power of the proposed device is theoretically higher than the experimentally available data from a Low-Temperature-Grown (LTG) GaAs photomixer integrated with dipole or bow-tie antenna reported in the literature.

  • Design, Fabrication and Characterisation of Normal-Incidence 1.56-µm Multiple-Quantum-Well Asymmetric Fabry-Perot Modulators for Passive Picocells

    Chin-Pang LIU  Alwyn SEEDS  Jagvinder S. CHADHA  Paul N. STAVRINOU  Gareth PARRY  Mark WHITEHEAD  Andrey Bogdanovich KRYSA  John Stuart ROBERTS  

     
    INVITED PAPER-MWP Devices

      Vol:
    E86-C No:7
      Page(s):
    1281-1289

    We have designed and fabricated air-bridged modulators with bandwidths exceeding 10 GHz, the highest yet realised to date for InGaAsP/InGaAsP multiple-quantum-well (MQW) asymmetric Fabry-Perot modulators (AFPMs). Microwave modulation, measurements of intermodulation between the photodetected downlink and modulated uplink signals, and bi-directional broadband data over fibre transmission experiments have been performed to verify the potential of the AFPM as a single electrical/optical transceiver. We also report the first direct integration of this AFPM with a microstrip patch antenna and present results of a preliminary microwave signal transmission experiment over a distance of 1.4 m in free-space at 5.2 GHz with the integrated AFPM as a photodetector.

  • Millimeter-Wave InP/InGaAs Photo-HBT and Its Application to Optoelectronic Integrated Circuits

    Muriel MULLER  Suwimol WITHITSOONTHORN  Muriel RIET  Jean-Louis BENCHIMOL  Carmen GONZALEZ  

     
    PAPER-MWP Devices

      Vol:
    E86-C No:7
      Page(s):
    1299-1310

    In this paper, we describe the design, optimization and fabrication of high-speed InP/InGaAs heterojunction bipolar phototransistors (photo-HBTs) with both optical cut-off frequency (Fc) and optical gain (Gopt) higher than 100 GHz and 30 dB, respectively. Small- and large-signal models of the photo-HBT have been developed in order to design optoelectronic monolithically integrated circuits (OEIC) using this device. Integrated circuits such as optoelectronic narrow-band amplifiers at 28 GHz with a transimpedance gain of 50 dBΩ and optoelectronic upconverting mixers at 28 and 42 GHz with a mixer conversion gain of 17.8 dB and 9.2 dB respectively, were fabricated. The performances of the mixer circuits were superior to those of individual photo-HBT mixer. These optoelectronic integrated circuits based on InP photo-HBTs are attractive building blocks for realizing compact and cost-effective photoreceivers for millimeter-wave radio-over-fiber links.

  • Proposal of Higher-Order Spread Spectrum Direct Optical Switching CDMA System

    Kazuo KUMAMOTO  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1753-1765

    This paper proposes higher-order spread spectrum direct optical switching CDMA system and an aliasing canceler to remove the aliasing distortion caused by higher-order bandpass sampling. Theoretical analysis of the signal quality shows that the 3rd order bandpass sampling scheme can improve the carrier-to-interference-power ratio compared with the conventional 1st order bandpass sampling scheme, by 5 dB.

  • Proposal of Direct Optical Switching CDMA for Cable-To-The-Air System and Its Performance Analysis

    Sangjo PARK  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER-Optical Communication

      Vol:
    E81-B No:6
      Page(s):
    1188-1196

    For Cable-To-The-Air network providing a seamless access network in both indoor and outdoor, direct optical switching CDMA scheme is newly proposed to multiplex any types of radio signals. In two types of connection methods, optical switch connection and optical coupler connection systems, the received carrier-to-interference-plus-noise power ratios are theoretically analyzed. It is clarified that in the optical switch connection connection system, by introducing the additional optical gain at each radio base station, the carrier-to-interference-plus-noise power ratios for all radio base stations and the connected number of radio base stations can be improved compared with the OC connection system.

  • Application of Optical Techniques to Microwave Signal Processing (MSP) - Optical-Microwave Signal Processing -

    Hiroyo OGAWA  

     
    INVITED PAPER-System Applications

      Vol:
    E79-C No:1
      Page(s):
    87-97

    This paper reviews an application of optical techniques to Microwave Signal Processing (MSP), such as frequency multiplexing using external optical modulators (EOMs), and microwave frequency add-drop multiplexing and mixing using semisconductor optical amplifiers (SOAs), as well as microwave phase control in the optical domain. The cascaded EOM links can be applied to microwave and millimeter-wave signal distribution networks. The add-drop links using SOAs can make it possible to realize a compact and cost-effective radio repeater for radio signal distribution. The several SOA mixing link configurations are also described.