The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] net(6055hit)

201-220hit(6055hit)

  • iMon: Network Function Virtualisation Monitoring Based on a Unique Agent

    Cong ZHOU  Jing TAO  Baosheng WANG  Na ZHAO  

     
    PAPER-Network

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    230-240

    As a key technology of 5G, NFV has attracted much attention. In addition, monitoring plays an important role, and can be widely used for virtual network function placement and resource optimisation. The existing monitoring methods focus on the monitoring load without considering they own resources needed. This raises a unique challenge: jointly optimising the NFV monitoring systems and minimising their monitoring load at runtime. The objective is to enhance the gain in real-time monitoring metrics at minimum monitoring costs. In this context, we propose a novel NFV monitoring solution, namely, iMon (Monitoring by inferring), that jointly optimises the monitoring process and reduces resource consumption. We formalise the monitoring process into a multitarget regression problem and propose three regression models. These models are implemented by a deep neural network, and an experimental platform is built to prove their availability and effectiveness. Finally, experiments also show that monitoring resource requirements are reduced, and the monitoring load is just 0.6% of that of the monitoring tool cAdvisor on our dataset.

  • Scattering of a Coaxial Cable with a Grooved Flange Using the Associated Weber-Orr Transform

    Sang-kyu KIM  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/08/24
      Vol:
    E106-B No:3
      Page(s):
    260-266

    Electromagnetic scattering in a coaxial cable having two flanges and concentric grooves is studied. The associated Weber-Orr transform is used to represent electromagnetic fields in an infinitely long cavity, and the mode-matching method is used to enforce boundary continuity. S-parameters obtained by our approach are compared with the reference solutions, and the characteristics are discussed when geometric parameters are varied. The results show that the proposed model provides cost effective and accurate solutions to the problem.

  • A Resource-Efficient Green Paradigm For Crowdsensing Based Spectrum Detection In Internet of Things Networks

    Xiaohui LI  Qi ZHU  Wenchao XIA  Yunpei CHEN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2022/09/12
      Vol:
    E106-B No:3
      Page(s):
    275-286

    Crowdsensing-based spectrum detection (CSD) is promising to enable full-coverage radio resource availability for the increasingly connected machines in the Internet of Things (IoT) networks. The current CSD scheme consumes a lot of energy and network resources for local sensing, processing, and distributed data reporting for each crowdsensing device. Furthermore, when the amount of reported data is large, the data fusion implemented at the requestor can easily cause high latency. For improving efficiencies in both energy and network resources, this paper proposes a green CSD (GCSD) paradigm. The ambient backscatter (AmB) is used to enable a battery-free mode of operation in which the received spectrum data is reported directly through backscattering without local processing. The energy for backscattering can be provided by ambient radio frequency (RF) sources. Then, relying on air computation (AirComp), the data fusion can be implemented during the backscattering process and over the air by utilizing the summation property of wireless channel. This paper illustrates the model and the implementation process of the GCSD paradigm. Closed-form expressions of detection metrics are derived for the proposed GCSD. Simulation results verify the correctness of the theoretical derivation and demonstrate the green properties of the GCSD paradigm.

  • An Interactive and Reductive Graph Processing Library for Edge Computing in Smart Society

    Jun ZHOU  Masaaki KONDO  

     
    PAPER

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:3
      Page(s):
    319-327

    Due to the limitations of cloud computing on latency, bandwidth and data confidentiality, edge computing has emerged as a novel location-aware paradigm to provide them with more processing capacity to improve the computing performance and quality of service (QoS) in several typical domains of human activity in smart society, such as social networks, medical diagnosis, telecommunications, recommendation systems, internal threat detection, transports, Internet of Things (IoT), etc. These application domains often handle a vast collection of entities with various relationships, which can be naturally represented by the graph data structure. Graph processing is a powerful tool to model and optimize complex problems in which the graph-based data is involved. In view of the relatively insufficient resource provisioning of the portable terminals, in this paper, for the first time to our knowledge, we propose an interactive and reductive graph processing library (GPL) for edge computing in smart society at low overhead. Experimental evaluation is conducted to indicate that the proposed GPL is more user-friendly and highly competitive compared with other established systems, such as igraph, NetworKit and NetworkX, based on different graph datasets over a variety of popular algorithms.

  • Split and Eliminate: A Region-Based Segmentation for Hardware Trojan Detection

    Ann Jelyn TIEMPO  Yong-Jin JEONG  

     
    PAPER-Dependable Computing

      Pubricized:
    2022/12/09
      Vol:
    E106-D No:3
      Page(s):
    349-356

    Using third-party intellectual properties (3PIP) has been a norm in IC design development process to meet the time-to-market demand and at the same time minimizing the cost. But this flow introduces a threat, such as hardware trojan, which may compromise the security and trustworthiness of underlying hardware, like disclosing confidential information, impeding normal execution and even permanent damage to the system. In years, different detections methods are explored, from just identifying if the circuit is infected with hardware trojan using conventional methods to applying machine learning where it identifies which nets are most likely are hardware trojans. But the performance is not satisfactory in terms of maximizing the detection rate and minimizing the false positive rate. In this paper, a new hardware trojan detection approach is proposed where gate-level netlist is segmented into regions first before analyzing which nets might be hardware trojans. The segmentation process depends on the nets' connectivity, more specifically by looking on each fanout points. Then, further analysis takes place by means of computing the structural similarity of each segmented region and differentiate hardware trojan nets from normal nets. Experimental results show 100% detection of hardware trojan nets inserted on each benchmark circuits and an overall average of 1.38% of false positive rates which resulted to a higher accuracy with an average of 99.31%.

  • GUI System to Support Cardiology Examination Based on Explainable Regression CNN for Estimating Pulmonary Artery Wedge Pressure

    Yuto OMAE  Yuki SAITO  Yohei KAKIMOTO  Daisuke FUKAMACHI  Koichi NAGASHIMA  Yasuo OKUMURA  Jun TOYOTANI  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2022/12/08
      Vol:
    E106-D No:3
      Page(s):
    423-426

    In this article, a GUI system is proposed to support clinical cardiology examinations. The proposed system estimates “pulmonary artery wedge pressure” based on patients' chest radiographs using an explainable regression-based convolutional neural network. The GUI system was validated by performing an effectiveness survey with 23 cardiology physicians with medical licenses. The results indicated that many physicians considered the GUI system to be effective.

  • Functional Connectivity and Small-World Networks in Prion Disease

    Chisho TAKEOKA  Toshimasa YAMAZAKI  Yoshiyuki KUROIWA  Kimihiro FUJINO  Toshiaki HIRAI  Hidehiro MIZUSAWA  

     
    LETTER-Biological Engineering

      Pubricized:
    2022/11/28
      Vol:
    E106-D No:3
      Page(s):
    427-430

    We characterized prion disease by comparing brain functional connectivity network (BFCN), which were constructed by 16-ch scalp-recorded electroencephalograms (EEGs). The connectivity between each pair of nodes (electrodes) were computed by synchronization likelihood (SL). The BFCN was applied to graph theory to discriminate prion disease patients from healthy elderlies and dementia groups.

  • Electromagnetic Wave Pattern Detection with Multiple Sensors in the Manufacturing Field

    Ayano OHNISHI  Michio MIYAMOTO  Yoshio TAKEUCHI  Toshiyuki MAEYAMA  Akio HASEGAWA  Hiroyuki YOKOYAMA  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-B No:2
      Page(s):
    109-116

    Multiple wireless communication systems are often operated together in the same area in such manufacturing sites as factories where wideband noise may be emitted from industrial equipment over channels for wireless communication systems. To perform highly reliable wireless communication in such environments, radio wave environments must be monitored that are specific to each manufacturing site to find channels and timing that enable stable communication. The authors studied technologies using machine learning to efficiently analyze a large amount of monitoring data, including signals whose spectrum shape is undefined, such as electromagnetic noise over a wideband. In this paper, we generated common supervised data for multiple sensors by conjointly clustering features after normalizing those calculated in each sensor to recognize the signal reception timing from identical sources and eliminate the complexity of supervised data management. We confirmed our method's effectiveness through signal models and actual data sampled by sensors that we developed.

  • Combining Spiking Neural Networks with Artificial Neural Networks for Enhanced Image Classification

    Naoya MURAMATSU  Hai-Tao YU  Tetsuji SATOH  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:2
      Page(s):
    252-261

    With the continued innovation of deep neural networks, spiking neural networks (SNNs) that more closely resemble biological brain synapses have attracted attention because of their low power consumption. Unlike artificial neural networks (ANNs), for continuous data values, they must employ an encoding process to convert the values to spike trains, suppressing the SNN's performance. To avoid this degradation, the incoming analog signal must be regulated prior to the encoding process, which is also realized in living things eg, the basement membranes of humans mechanically perform the Fourier transform. To this end, we combine an ANN and an SNN to build ANN-to-SNN hybrid neural networks (HNNs) that improve the concerned performance. To qualify this performance and robustness, MNIST and CIFAR-10 image datasets are used for various classification tasks in which the training and encoding methods changes. In addition, we present simultaneous and separate training methods for the artificial and spiking layers, considering the encoding methods of each. We find that increasing the number of artificial layers at the expense of spiking layers improves the HNN performance. For straightforward datasets such as MNIST, similar performances as ANN's are achieved by using duplicate coding and separate learning. However, for more complex tasks, the use of Gaussian coding and simultaneous learning is found to improve the accuracy of the HNN while lower power consumption.

  • Machine Learning in 6G Wireless Communications Open Access

    Tomoaki OHTSUKI  

     
    INVITED PAPER

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    75-83

    Mobile communication systems are not only the core of the Information and Communication Technology (ICT) infrastructure but also that of our social infrastructure. The 5th generation mobile communication system (5G) has already started and is in use. 5G is expected for various use cases in industry and society. Thus, many companies and research institutes are now trying to improve the performance of 5G, that is, 5G Enhancement and the next generation of mobile communication systems (Beyond 5G (6G)). 6G is expected to meet various highly demanding requirements even compared with 5G, such as extremely high data rate, extremely large coverage, extremely low latency, extremely low energy, extremely high reliability, extreme massive connectivity, and so on. Artificial intelligence (AI) and machine learning (ML), AI/ML, will have more important roles than ever in 6G wireless communications with the above extreme high requirements for a diversity of applications, including new combinations of the requirements for new use cases. We can say that AI/ML will be essential for 6G wireless communications. This paper introduces some ML techniques and applications in 6G wireless communications, mainly focusing on the physical layer.

  • Toward Selective Adversarial Attack for Gait Recognition Systems Based on Deep Neural Network

    Hyun KWON  

     
    LETTER-Information Network

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:2
      Page(s):
    262-266

    Deep neural networks (DNNs) perform well for image recognition, speech recognition, and pattern analysis. However, such neural networks are vulnerable to adversarial examples. An adversarial example is a data sample created by adding a small amount of noise to an original sample in such a way that it is difficult for humans to identify but that will cause the sample to be misclassified by a target model. In a military environment, adversarial examples that are correctly classified by a friendly model while deceiving an enemy model may be useful. In this paper, we propose a method for generating a selective adversarial example that is correctly classified by a friendly gait recognition system and misclassified by an enemy gait recognition system. The proposed scheme generates the selective adversarial example by combining the loss for correct classification by the friendly gait recognition system with the loss for misclassification by the enemy gait recognition system. In our experiments, we used the CASIA Gait Database as the dataset and TensorFlow as the machine learning library. The results show that the proposed method can generate selective adversarial examples that have a 98.5% attack success rate against an enemy gait recognition system and are classified with 87.3% accuracy by a friendly gait recognition system.

  • Wireless-Powered Relays Assisted Batteryless IoT Networks Empowered by Energy Beamforming

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/08/23
      Vol:
    E106-A No:2
      Page(s):
    164-168

    In this letter, we propose an energy beamforming empowered relaying scheme for a batteryless IoT network, where wireless-powered relays are deployed between the hybrid access point (HAP) and batteryless IoT devices to assist the uplink information transmission from the devices to the HAP. In particular, the HAP first exploits energy beamforming to efficiently transmit radio frequency (RF) signals to transfer energy to the relays and as the incident signals to enable the information backscattering of batteryless IoT devices. Then, each relay uses the harvested energy to forward the decoded signals from its corresponding batteryless IoT device to the HAP, where the maximum-ratio combing is used for further performance improvement. To maximize the network sum-rate, the joint optimization of energy beamforming vectors at the HAP, network time scheduling, power allocation at the relays, and relection coefficient at the users is investigated. As the formulated problem is non-convex, we propose an alternating optimization algorithm with the variable substitution and semi-definite relaxation (SDR) techniques to solve it efficiently. Specifically, we prove that the obtained energy beamforming matrices are always rank-one. Numerical results show that compared to the benchmark schemes, the proposed scheme can achieve a significant sum-rate gain.

  • A SOM-CNN Algorithm for NLOS Signal Identification

    Ze Fu GAO  Hai Cheng TAO   Qin Yu ZHU  Yi Wen JIAO  Dong LI  Fei Long MAO  Chao LI  Yi Tong SI  Yu Xin WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    117-132

    Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.

  • Multi-Input Physical Layer Network Coding in Two-Dimensional Wireless Multihop Networks

    Hideaki TSUGITA  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    193-202

    This paper proposes multi-input physical layer network coding (multi-input PLNC) for high speed wireless communication in two-dimensional wireless multihop networks. In the proposed PLNC, all the terminals send their packets simultaneously for the neighboring relays to maximize the network throughput in the first slot, and all the relays also do the same to the neighboring terminals in the second slot. Those simultaneous signal transmissions cause multiple signals to be received at the relays and the terminals. Signal reception in the multi-input PLNC uses multichannel filtering to mitigate the difficulties caused by the multiple signal reception, which enables the two-input PLNC to be applied. In addition, a non-linear precoding is proposed to reduce the computational complexity of the signal detection at the relays and the terminals. The proposed multi-input PLNC makes all the terminals exchange their packets with the neighboring terminals in only two time slots. The performance of the proposed multi-input PLNC is confirmed by computer simulation. The proposed multi-input physical layer network coding achieves much higher network throughput than conventional techniques in a two-dimensional multihop wireless network with 7 terminals. The proposed multi-input physical layer network coding attains superior transmission performance in wireless hexagonal multihop networks, as long as more than 6 antennas are placed on the terminals and the relays.

  • Broadcast with Tree Selection from Multiple Spanning Trees on an Overlay Network Open Access

    Takeshi KANEKO  Kazuyuki SHUDO  

     
    PAPER-Network

      Pubricized:
    2022/08/16
      Vol:
    E106-B No:2
      Page(s):
    145-155

    On an overlay network where a number of nodes work autonomously in a decentralized way, the efficiency of broadcasts has a significant impact on the performance of distributed systems built on the network. While a broadcast method using a spanning tree produces a small number of messages, the routing path lengths are prone to be relatively large. Moreover, when multiple nodes can be source nodes, inefficient broadcasts often occur because the efficient tree topology differs for each node. To address this problem, we propose a novel protocol in which a source node selects an efficient tree from multiple spanning trees when broadcasting. Our method shortens routing paths while maintaining a small number of messages. We examined path lengths and the number of messages for broadcasts on various topologies. As a result, especially for a random graph, our proposed method shortened path lengths by approximately 28% compared with a method using a spanning tree, with almost the same number of messages.

  • A Visual-Identification Based Forwarding Strategy for Vehicular Named Data Networking

    Minh NGO  Satoshi OHZAHATA  Ryo YAMAMOTO  Toshihiko KATO  

     
    PAPER-Information Network

      Pubricized:
    2022/11/17
      Vol:
    E106-D No:2
      Page(s):
    204-217

    Currently, NDN-based VANETs protocols have several problems with packet overhead of rebroadcasting, control packet, and the accuracy of next-hop selection due to the dynamic topology. To deal with these problems in this paper, we propose a robust and lightweight forwarding protocol in Vehicular ad-hoc Named Data Networking. The concept of our forwarding protocol is adopting a packet-free approach. A vehicle collects its neighbor's visual identification by a pair of cameras (front and rear) to assign a unique visual ID for each node. Based on these IDs, we construct a hop-by-hop FIB-based forwarding strategy effectively. Furthermore, the Face duplication [1] in the wireless environment causes an all-broadcast problem. We add the visual information to Face to distinguish the incoming and outgoing Face to prevent broadcast-storm and make FIB and PIT work more accurate and efficiently. The performance evaluation results focusing on the communication overhead show that our proposal has better results in overall network traffic costs and Interest satisfaction ratio than previous works.

  • Critical Location of Communications Network with Power Grid Power Supply Open Access

    Hiroshi SAITO  

     
    PAPER-Network Management/Operation

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    166-173

    When a disaster hits a network, network service disruptions can occur even if the network facilities have survived and battery and power generators are provided. This is because in the event of a disaster, the power supply will not be restarted within the lifetime of the battery or oil transportation will not be restarted before running out of oil and power will be running out. Therefore, taking a power grid into account is important. This paper proposes a polynomial-time algorithm to identify the critical location C*D of a communications network Nc when a disaster hits. Electrical power grid Np supplies power to the nodes of Nc, and a link in Nc is disconnected when a node or a link in Nc or Np fails. Here, the disaster area is modeled as co-centric disks and the failure probability is higher in the inner disk than the outer one. The location of the center of the disaster with the greatest expected number of disconnected links in Nc is taken as the critical location C*D.

  • A Compression Router for Low-Latency Network-on-Chip

    Naoya NIWA  Yoshiya SHIKAMA  Hideharu AMANO  Michihiro KOIBUCHI  

     
    PAPER-Computer System

      Pubricized:
    2022/11/08
      Vol:
    E106-D No:2
      Page(s):
    170-180

    Network-on-Chips (NoCs) are important components for scalable many-core processors. Because the performance of parallel applications is usually sensitive to the latency of NoCs, reducing it is a primary requirement. In this study, a compression router that hides the (de)compression-operation delay is proposed. The compression router (de)compresses the contents of the incoming packet before the switch arbitration is completed, thus shortening the packet length without latency penalty and reducing the network injection-and-ejection latency. Evaluation results show that the compression router improves up to 33% of the parallel application performance (conjugate gradients (CG), fast Fourier transform (FT), integer sort (IS), and traveling salesman problem (TSP)) and 63% of the effective network throughput by 1.8 compression ratio on NoC. The cost is an increase in router area and its energy consumption by 0.22mm2 and 1.6 times compared to the conventional virtual-channel router. Another finding is that off-loading the decompressor onto a network interface decreases the compression-router area by 57% at the expense of the moderate increase in communication latency.

  • Comparative Evaluation of Diverse Features in Fluency Evaluation of Spontaneous Speech

    Huaijin DENG  Takehito UTSURO  Akio KOBAYASHI  Hiromitsu NISHIZAKI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2022/10/25
      Vol:
    E106-D No:1
      Page(s):
    36-45

    There have been lots of previous studies on fluency evaluation of spontaneous speech. However, most of them focus on lexical cues, and little emphasis is placed on how diverse acoustic features and deep end-to-end models contribute to improving the performance. In this paper, we describe multi-layer neural network to investigate not only lexical features extracted from transcription, but also consider utterance-level acoustic features from audio data. We also conduct the experiments to investigate the performance of end-to-end approaches with mel-spectrogram in this task. As the speech fluency evaluation task, we evaluate our proposed method in two binary classification tasks of fluent speech detection and disfluent speech detection. Speech data of around 10 seconds duration each with the annotation of the three classes of “fluent,” “neutral,” and “disfluent” is used for evaluation. According to the two way splits of those three classes, the task of fluent speech detection is defined as binary classification of fluent vs. neutral and disfluent, while that of disfluent speech detection is defined as binary classification of fluent and neutral vs. disfluent. We then conduct experiments with the purpose of comparative evaluation of multi-layer neural network with diverse features as well as end-to-end models. For the fluent speech detection, in the comparison of utterance-level disfluency-based, prosodic, and acoustic features with multi-layer neural network, disfluency-based and prosodic features only are better. More specifically, the performance improved a lot when removing all of the acoustic features from the full set of features, while the performance is damaged a lot if fillers related features are removed. Overall, however, the end-to-end Transformer+VGGNet model with mel-spectrogram achieves the best results. For the disfluent speech detection, the multi-layer neural network using disfluency-based, prosodic, and acoustic features without fillers achieves the best results. The end-to-end Transformer+VGGNet architecture also obtains high scores, whereas it is exceeded by the best results with the multi-layer neural network with significant difference. Thus, unlike in the fluent speech detection, disfluency-based and prosodic features other than fillers are still necessary in the disfluent speech detection.

  • Face Image Generation of Anime Characters Using an Advanced First Order Motion Model with Facial Landmarks

    Junki OSHIBA  Motoi IWATA  Koichi KISE  

     
    PAPER

      Pubricized:
    2022/10/12
      Vol:
    E106-D No:1
      Page(s):
    22-30

    Recently, deep learning for image generation with a guide for the generation has been progressing. Many methods have been proposed to generate the animation of facial expression change from a single face image by transferring some facial expression information to the face image. In particular, the method of using facial landmarks as facial expression information can generate a variety of facial expressions. However, most methods do not focus on anime characters but humans. Moreover, we attempted to apply several existing methods to anime characters by training the methods on an anime character face dataset; however, they generated images with noise, even in regions where there was no change. The first order motion model (FOMM) is an image generation method that takes two images as input and transfers one facial expression or pose to the other. By explicitly calculating the difference between the two images based on optical flow, FOMM can generate images with low noise in the unchanged regions. In the following, we focus on the aspect of the face image generation in FOMM. When we think about the employment of facial landmarks as targets, the performance of FOMM is not enough because FOMM cannot use a facial landmark as a facial expression target because the appearances of a face image and a facial landmark are quite different. Therefore, we propose an advanced FOMM method to use facial landmarks as a facial expression target. In the proposed method, we change the input data and data flow to use facial landmarks. Additionally, to generate face images with expressions that follow the target landmarks more closely, we introduce the landmark estimation loss, which is computed by comparing the landmark detected from the generated image with the target landmark. Our experiments on an anime character face image dataset demonstrated that our method is effective for landmark-guided face image generation for anime characters. Furthermore, our method outperformed other methods quantitatively and generated face images with less noise.

201-220hit(6055hit)