The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] net(6043hit)

1-20hit(6043hit)

  • EfficientNet Empowered by Dendritic Learning for Diabetic Retinopathy Open Access

    Zeyuan JU  Zhipeng LIU  Yu GAO  Haotian LI  Qianhang DU  Kota YOSHIKAWA  Shangce GAO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/05/20
      Vol:
    E107-D No:9
      Page(s):
    1281-1284

    Medical imaging plays an indispensable role in precise patient diagnosis. The integration of deep learning into medical diagnostics is becoming increasingly common. However, existing deep learning models face performance and efficiency challenges, especially in resource-constrained scenarios. To overcome these challenges, we introduce a novel dendritic neural efficientnet model called DEN, inspired by the function of brain neurons, which efficiently extracts image features and enhances image classification performance. Assessments on a diabetic retinopathy fundus image dataset reveal DEN’s superior performance compared to EfficientNet and other classical neural network models.

  • 6T-8T Hybrid SRAM for Lower-Power Neural-Network Processing by Lowering Operating Voltage Open Access

    Ji WU  Ruoxi YU  Kazuteru NAMBA  

     
    LETTER-Computer System

      Pubricized:
    2024/05/20
      Vol:
    E107-D No:9
      Page(s):
    1278-1280

    This letter introduces an innovation for the heterogeneous storage architecture of AI chips, specifically focusing on the integration of six transistors(6T) and eight transistors(8T) hybrid SRAM. Traditional approaches to reducing SRAM power consumption typically involve lowering the operating voltage, a method that often substantially diminishes the recognition rate of neural networks. However, the innovative design detailed in this letter amalgamates the strengths of both SRAM types. It operates at a voltage lower than conventional SRAM, thereby significantly reducing the power consumption in neural networks without compromising performance.

  • Unsupervised Intrusion Detection Based on Asymmetric Auto-Encoder Feature Extraction Open Access

    Chunbo LIU  Liyin WANG  Zhikai ZHANG  Chunmiao XIANG  Zhaojun GU  Zhi WANG  Shuang WANG  

     
    PAPER-Information Network

      Pubricized:
    2024/04/25
      Vol:
    E107-D No:9
      Page(s):
    1161-1173

    Aiming at the problem that large-scale traffic data lack labels and take too long for feature extraction in network intrusion detection, an unsupervised intrusion detection method ACOPOD based on Adam asymmetric autoencoder and COPOD (Copula-Based Outlier Detection) algorithm is proposed. This method uses the Adam asymmetric autoencoder with a reduced structure to extract features from the network data and reduce the data dimension. Then, based on the Copula function, the joint probability distribution of all features is represented by the edge probability of each feature, and then the outliers are detected. Experiments on the published NSL-KDD dataset with six other traditional unsupervised anomaly detection methods show that ACOPOD achieves higher precision and has obvious advantages in running speed. Experiments on the real civil aviation air traffic management network dataset further prove that the method can effectively detect intrusion behavior in the real network environment, and the results are interpretable and helpful for attack source tracing.

  • Large Class Detection Using GNNs: A Graph Based Deep Learning Approach Utilizing Three Typical GNN Model Architectures Open Access

    HanYu ZHANG  Tomoji KISHI  

     
    PAPER-Software Engineering

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:9
      Page(s):
    1140-1150

    Software refactoring is an important process in software development. During software refactoring, code smell is a popular research topic that refers to design or implementation flaws in the software. Large class is one of the most concerning code smells in software refactoring. Detecting and refactoring such problem has a profound impact on software quality. In past years, software metrics and clustering techniques have commonly been used for the large class detection. However, deep-learning-based approaches have also received considerable attention in recent studies. In this study, we apply graph neural networks (GNNs), an important division of deep learning, to address the problem of large class detection. First, to support the extensive data requirements of the deep learning task, we apply a semiautomatic approach to generate a substantial number of data samples. Next, we design a new type of directed heterogeneous graph (DHG) as an input graph using the methods similarity matrix and software metrics. We construct an input graph for each class sample and make the graph classification with GNNs to identify the smelly classes. In our experiments, we apply three typical GNN model architectures for large class detection and compare the results with those of previous studies. The results show that the proposed approach can achieve more accurate and stable detection performance.

  • Node-to-Node and Node-to-Set Disjoint Paths Problems in Bicubes Open Access

    Arata KANEKO  Htoo Htoo Sandi KYAW  Kunihiro FUJIYOSHI  Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/17
      Vol:
    E107-D No:9
      Page(s):
    1133-1139

    In this paper, we propose two algorithms, B-N2N and B-N2S, that solve the node-to-node and node-to-set disjoint paths problems in the bicube, respectively. We prove their correctness and that the time complexities of the B-N2N and B-N2S algorithms are O(n2) and O(n2 log n), respectively, if they are applied in an n-dimensional bicube with n ≥ 5. Also, we prove that the maximum lengths of the paths generated by B-N2N and B-N2S are both n + 2. Furthermore, we have shown that the algorithms can be applied in the locally twisted cube, too, with the same performance.

  • Using Genetic Algorithm and Mathematical Programming Model for Ambulance Location Problem in Emergency Medical Service Open Access

    Batnasan LUVAANJALBA  Elaine Yi-Ling WU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/05/08
      Vol:
    E107-D No:9
      Page(s):
    1123-1132

    Emergency Medical Services (EMS) play a crucial role in healthcare systems, managing pre-hospital or out-of-hospital emergencies from the onset of an emergency call to the patient’s arrival at a healthcare facility. The design of an efficient ambulance location model is pivotal in enhancing survival rates, controlling morbidity, and preventing disability. Key factors in the classical models typically include travel time, demand zones, and the number of stations. While urban EMS systems have received extensive examination due to their centralized populations, rural areas pose distinct challenges. These include lower population density and longer response distances, contributing to a higher fatality rate due to sparse population distribution, limited EMS stations, and extended travel times. To address these challenges, we introduce a novel mathematical model that aims to optimize coverage and equity. A distinctive feature of our model is the integration of equity within the objective function, coupled with a focus on practical response time that includes the period required for personal protective equipment procedures, ensuring the model’s applicability and realism in emergency response scenarios. We tackle the proposed problem using a tailored genetic algorithm and propose a greedy algorithm for solution construction. The implementation of our tailored Genetic Algorithm promises efficient and effective EMS solutions, potentially enhancing emergency care and health outcomes in rural communities.

  • SLARS: Secure Lightweight Authentication for Roaming Service in Smart City Open Access

    Hakjun LEE  

     
    PAPER-Internet

      Vol:
    E107-B No:9
      Page(s):
    595-606

    Smart cities aim to improve the quality of life of citizens and efficiency of city operations through utilization of 5G communication technology. Based on various technologies such as IoT, cloud computing, artificial intelligence, and big data, they provide smart services in terms of urban planning, development, and management for solving problems such as fine dust, traffic congestion and safety, energy efficiency, water shortage, and an aging population. However, as smart city has an open network structure, an adversary can easily try to gain illegal access and perform denial of service and sniffing attacks that can threaten the safety and privacy of citizens. In smart cities, the global mobility network (GLOMONET) supports mobile services between heterogeneous networks of mobile devices such as autonomous vehicles and drones. Recently, Chen et al. proposed a user authentication scheme for GLOMONET in smart cities. Nevertheless, we found some weaknesses in the scheme proposed by them. In this study, we propose a secure lightweight authentication for roaming services in a smart city, called SLARS, to enhance security. We proved that SLARS is more secure and efficient than the related authentication scheme for GLOMONET through security and performance analysis. Our analysis results show that SLARS satisfies all security requirements in GLOMONET and saves 72.7% of computation time compared to that of Chen et al.’s scheme.

  • A Distributed Efficient Blockchain Oracle Scheme for Internet of Things Open Access

    Youquan XIAN  Lianghaojie ZHOU  Jianyong JIANG  Boyi WANG  Hao HUO  Peng LIU  

     
    PAPER-Network System

      Vol:
    E107-B No:9
      Page(s):
    573-582

    In recent years, blockchain has been widely applied in the Internet of Things (IoT). Blockchain oracle, as a bridge for data communication between blockchain and off-chain, has also received significant attention. However, the numerous and heterogeneous devices in the IoT pose great challenges to the efficiency and security of data acquisition for oracles. We find that the matching relationship between data sources and oracle nodes greatly affects the efficiency and service quality of the entire oracle system. To address these issues, this paper proposes a distributed and efficient oracle solution tailored for the IoT, enabling fast acquisition of real-time off-chain data. Specifically, we first design a distributed oracle architecture that combines both Trusted Execution Environment (TEE) devices and ordinary devices to improve system scalability, considering the heterogeneity of IoT devices. Secondly, based on the trusted node information provided by TEE, we determine the matching relationship between nodes and data sources, assigning appropriate nodes for tasks to enhance system efficiency. Through simulation experiments, our proposed solution has been shown to effectively improve the efficiency and service quality of the system, reducing the average response time by approximately 9.92% compared to conventional approaches.

  • A Novel Frequency Hopping Prediction Model Based on TCN-GRU Open Access

    Chen ZHONG  Chegnyu WU  Xiangyang LI  Ao ZHAN  Zhengqiang WANG  

     
    LETTER-Intelligent Transport System

      Pubricized:
    2024/04/19
      Vol:
    E107-A No:9
      Page(s):
    1577-1581

    A novel temporal convolution network-gated recurrent unit (NTCN-GRU) algorithm is proposed for the greatest of constant false alarm rate (GO-CFAR) frequency hopping (FH) prediction, integrating GRU and Bayesian optimization (BO). GRU efficiently captures the semantic associations among long FH sequences, and mitigates the phenomenon of gradient vanishing or explosion. BO improves extracting data features by optimizing hyperparameters besides. Simulations demonstrate that the proposed algorithm effectively reduces the loss in the training process, greatly improves the FH prediction effect, and outperforms the existing FH sequence prediction model. The model runtime is also reduced by three-quarters compared with others FH sequence prediction models.

  • Spatial Extrapolation of Early Room Impulse Responses with Noise-Robust Physics-Informed Neural Network Open Access

    Izumi TSUNOKUNI  Gen SATO  Yusuke IKEDA  Yasuhiro OIKAWA  

     
    LETTER-Engineering Acoustics

      Pubricized:
    2024/04/08
      Vol:
    E107-A No:9
      Page(s):
    1556-1560

    This paper reports a spatial extrapolation of the sound field with a physics-informed neural network. We investigate the spatial extrapolation of the room impulse responses with physics-informed SIREN architecture. Furthermore, we proposed a noise-robust extrapolation method by introducing a tolerance term to the loss function.

  • Deep Learning-Inspired Automatic Minutiae Extraction from Semi-Automated Annotations Open Access

    Hongtian ZHAO  Hua YANG  Shibao ZHENG  

     
    PAPER-Vision

      Pubricized:
    2024/04/05
      Vol:
    E107-A No:9
      Page(s):
    1509-1521

    Minutiae pattern extraction plays a crucial role in fingerprint registration and identification for electronic applications. However, the extraction accuracy is seriously compromised by the presence of contaminated ridge lines and complex background scenarios. General image processing-based methods, which rely on many prior hypotheses, fail to effectively handle minutiae extraction in complex scenarios. Previous works have shown that CNN-based methods can perform well in object detection tasks. However, the deep neural networks (DNNs)-based methods are restricted by the limitation of public labeled datasets due to legitimate privacy concerns. To address these challenges comprehensively, this paper presents a fully automated minutiae extraction method leveraging DNNs. Firstly, we create a fingerprint minutiae dataset using a semi-automated minutiae annotation algorithm. Subsequently, we propose a minutiae extraction model based on Residual Networks (Resnet) that enables end-to-end prediction of minutiae. Moreover, we introduce a novel non-maximal suppression (NMS) procedure, guided by the Generalized Intersection over Union (GIoU) metric, during the inference phase to effectively handle outliers. Experimental evaluations conducted on the NIST SD4 and FVC 2004 databases demonstrate the superiority of the proposed method over existing state-of-the-art minutiae extraction approaches.

  • A CNN-Based Feature Pyramid Segmentation Strategy for Acoustic Scene Classification Open Access

    Ji XI  Yue XIE  Pengxu JIANG  Wei JIANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2024/03/26
      Vol:
    E107-D No:8
      Page(s):
    1093-1096

    Currently, a significant portion of acoustic scene categorization (ASC) research is centered around utilizing Convolutional Neural Network (CNN) models. This preference is primarily due to CNN’s ability to effectively extract time-frequency information from audio recordings of scenes by employing spectrum data as input. The expression of many dimensions can be achieved by utilizing 2D spectrum characteristics. Nevertheless, the diverse interpretations of the same object’s existence in different positions on the spectrum map can be attributed to the discrepancies between spectrum properties and picture qualities. The lack of distinction between different aspects of input information in ASC-based CNN networks may result in a decline in system performance. Considering this, a feature pyramid segmentation (FPS) approach based on CNN is proposed. The proposed approach involves utilizing spectrum features as the input for the model. These features are split based on a preset scale, and each segment-level feature is then fed into the CNN network for learning. The SoftMax classifier will receive the output of all feature scales, and these high-level features will be fused and fed to it to categorize different scenarios. The experiment provides evidence to support the efficacy of the FPS strategy and its potential to enhance the performance of the ASC system.

  • Error-Tolerance-Aware Write-Energy Reduction of MTJ-Based Quantized Neural Network Hardware Open Access

    Ken ASANO  Masanori NATSUI  Takahiro HANYU  

     
    PAPER

      Pubricized:
    2024/04/22
      Vol:
    E107-D No:8
      Page(s):
    958-965

    The development of energy-efficient neural network hardware using magnetic tunnel junction (MTJ) devices has been widely investigated. One of the issues in the use of MTJ devices is large write energy. Since MTJ devices show stochastic behaviors, a large write current with enough time length is required to guarantee the certainty of the information held in MTJ devices. This paper demonstrates that quantized neural networks (QNNs) exhibit high tolerance to bit errors in weights and an output feature map. Since probabilistic switching errors in MTJ devices do not have always a serious effect on the performance of QNNs, large write energy is not required for reliable switching operations of MTJ devices. Based on the evaluation results, we achieve about 80% write-energy reduction on buffer memory compared to the conventional method. In addition, it is demonstrated that binary representation exhibits higher bit-error tolerance than the other data representations in the range of large error rates.

  • Extending Binary Neural Networks to Bayesian Neural Networks with Probabilistic Interpretation of Binary Weights Open Access

    Taisei SAITO  Kota ANDO  Tetsuya ASAI  

     
    PAPER

      Pubricized:
    2024/04/17
      Vol:
    E107-D No:8
      Page(s):
    949-957

    Neural networks (NNs) fail to perform well or make excessive predictions when predicting out-of-distribution or unseen datasets. In contrast, Bayesian neural networks (BNNs) can quantify the uncertainty of their inference to solve this problem. Nevertheless, BNNs have not been widely adopted owing to their increased memory and computational cost. In this study, we propose a novel approach to extend binary neural networks by introducing a probabilistic interpretation of binary weights, effectively converting them into BNNs. The proposed approach can reduce the number of weights by half compared to the conventional method. A comprehensive comparative analysis with established methods like Monte Carlo dropout and Bayes by backprop was performed to assess the performance and capabilities of our proposed technique in terms of accuracy and capturing uncertainty. Through this analysis, we aim to provide insights into the advantages of this Bayesian extension.

  • Polling Schedule Algorithms for Data Aggregation with Sensor Phase Control in In-Vehicle UWB Networks Open Access

    Hajime MIGITA  Yuki NAKAGOSHI  Patrick FINNERTY  Chikara OHTA  Makoto OKUHARA  

     
    PAPER-Network

      Vol:
    E107-B No:8
      Page(s):
    529-540

    To enhance fuel efficiency and lower manufacturing and maintenance costs, in-vehicle wireless networks can facilitate the weight reduction of vehicle wire harnesses. In this paper, we utilize the Impulse Radio-Ultra Wideband (IR-UWB) of IEEE 802.15.4a/z for in-vehicle wireless networks because of its excellent signal penetration and robustness in multipath environments. Since clear channel assessment is optional in this standard, we employ polling control as a multiple access control to prevent interference within the system. Therein, the preamble overhead is large in IR-UWB of IEEE 802.15.4a/z. Hence, aggregating as much sensor data as possible within each frame is more efficient. In this paper, we assume that reading out data from sensors and sending data to actuators is periodical and that their respective phases can be adjusted. Therefore, this paper proposes an integer linear programming-based scheduling algorithm that minimizes the number of transmitted frames by adjusting the read and write phases. Furthermore, we provide a heuristic algorithm that computes a sub-optimal but acceptable solution in a shorter time. Experimental validation shows that the data aggregation of the proposed algorithms is robust against interference.

  • Video Reflection Removal by Modified EDVR and 3D Convolution Open Access

    Sota MORIYAMA  Koichi ICHIGE  Yuichi HORI  Masayuki TACHI  

     
    LETTER-Image

      Pubricized:
    2023/12/11
      Vol:
    E107-A No:8
      Page(s):
    1430-1434

    In this paper, we propose a method for video reflection removal using a video restoration framework with enhanced deformable networks (EDVR). We examine the effect of each module in EDVR on video reflection removal and modify the models using 3D convolutions. The performance of each modified model is evaluated in terms of the RMSE between the structural similarity (SSIM) and the smoothed SSIM representing temporal consistency.

  • An Optimized CNN-Attention Network for Clipped OFDM Receiver of Underwater Acoustic Communications Open Access

    Feng LIU  Qian XI  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/12/01
      Vol:
    E107-A No:8
      Page(s):
    1408-1412

    In underwater acoustic communication systems based on orthogonal frequency division multiplexing (OFDM), taking clipping to reduce the peak-to-average power ratio leads to nonlinear distortion of the signal, making the receiver unable to recover the faded signal accurately. In this letter, an Aquila optimizer-based convolutional attention block stacked network (AO-CABNet) is proposed to replace the receiver to improve the ability to recover the original signal. Simulation results show that the AO method has better optimization capability to quickly obtain the optimal parameters of the network model, and the proposed AO-CABNet structure outperforms existing schemes.

  • Permanent Magnet Synchronous Motor Speed Control System Based on Fractional Order Integral Sliding Mode Control Open Access

    Jun-Feng LIU  Yuan FENG  Zeng-Hui LI  Jing-Wei TANG  

     
    LETTER-Systems and Control

      Pubricized:
    2024/03/04
      Vol:
    E107-A No:8
      Page(s):
    1378-1381

    To improve the control performance of the permanent magnet synchronous motor speed control system, the fractional order calculus theory is combined with the sliding mode control to design the fractional order integral sliding mode sliding mode surface (FOISM) to improve the robustness of the system. Secondly, considering the existence of chattering phenomenon in sliding mode control, a new second-order sliding mode reaching law (NSOSMRL) is designed to improve the control accuracy of the system. Finally, the effectiveness of the proposed strategy is demonstrated by simulation.

  • Convolutional Neural Network Based on Regional Features and Dimension Matching for Skin Cancer Classification Open Access

    Zhichao SHA  Ziji MA  Kunlai XIONG  Liangcheng QIN  Xueying WANG  

     
    PAPER-Image

      Vol:
    E107-A No:8
      Page(s):
    1319-1327

    Diagnosis at an early stage is clinically important for the cure of skin cancer. However, since some skin cancers have similar intuitive characteristics, and dermatologists rely on subjective experience to distinguish skin cancer types, the accuracy is often suboptimal. Recently, the introduction of computer methods in the medical field has better assisted physicians to improve the recognition rate but some challenges still exist. In the face of massive dermoscopic image data, residual network (ResNet) is more suitable for learning feature relationships inside big data because of its deeper network depth. Aiming at the deficiency of ResNet, this paper proposes a multi-region feature extraction and raising dimension matching method, which further improves the utilization rate of medical image features. This method firstly extracted rich and diverse features from multiple regions of the feature map, avoiding the deficiency of traditional residual modules repeatedly extracting features in a few fixed regions. Then, the fused features are strengthened by up-dimensioning the branch path information and stacking it with the main path, which solves the problem that the information of two paths is not ideal after fusion due to different dimensionality. The proposed method is experimented on the International Skin Imaging Collaboration (ISIC) Archive dataset, which contains more than 40,000 images. The results of this work on this dataset and other datasets are evaluated to be improved over networks containing traditional residual modules and some popular networks.

  • CPNet: Covariance-Improved Prototype Network for Limited Samples Masked Face Recognition Using Few-Shot Learning Open Access

    Sendren Sheng-Dong XU  Albertus Andrie CHRISTIAN  Chien-Peng HO  Shun-Long WENG  

     
    PAPER-Image

      Pubricized:
    2023/12/11
      Vol:
    E107-A No:8
      Page(s):
    1296-1308

    During the COVID-19 pandemic, a robust system for masked face recognition has been required. Most existing solutions used many samples per identity for the model to recognize, but the processes involved are very laborious in a real-life scenario. Therefore, we propose “CPNet” as a suitable and reliable way of recognizing masked faces from only a few samples per identity. The prototype classifier uses a few-shot learning paradigm to perform the recognition process. To handle complex and occluded facial features, we incorporated the covariance structure of the classes to refine the class distance calculation. We also used sharpness-aware minimization (SAM) to improve the classifier. Extensive in-depth experiments on a variety of datasets show that our method achieves remarkable results with accuracy as high as 95.3%, which is 3.4% higher than that of the baseline prototype network used for comparison.

1-20hit(6043hit)