The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] net(6055hit)

281-300hit(6055hit)

  • Optimal Algorithm for Finding Representation of Subtree Distance

    Takanori MAEHARA  Kazutoshi ANDO  

     
    PAPER-Algorithms and Data Structures, Graphs and Networks

      Pubricized:
    2022/04/19
      Vol:
    E105-A No:9
      Page(s):
    1203-1210

    In this paper, we address the problem of finding a representation of a subtree distance, which is an extension of a tree metric. We show that a minimal representation is uniquely determined by a given subtree distance, and give an O(n2) time algorithm that finds such a representation, where n is the size of the ground set. Since a lower bound of the problem is Ω(n2), our algorithm achieves the optimal time complexity.

  • Joint User Association and Spectrum Allocation in Satellite-Terrestrial Integrated Networks

    Wenjing QIU  Aijun LIU  Chen HAN  Aihong LU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/15
      Vol:
    E105-B No:9
      Page(s):
    1063-1077

    This paper investigates the joint problem of user association and spectrum allocation in satellite-terrestrial integrated networks (STINs), where a low earth orbit (LEO) satellite access network cooperating with terrestrial networks constitutes a heterogeneous network, which is beneficial in terms of both providing seamless coverage as well as improving the backhaul capacity for the dense network scenario. However, the orbital movement of satellites results in the dynamic change of accessible satellites and the backhaul capacities. Moreover, spectrum sharing may be faced with severe co-channel interferences (CCIs) caused by overlapping coverage of multiple access points (APs). This paper aims to maximize the total sum rate considering the influences of the dynamic feature of STIN, backhaul capacity limitation and interference management. The optimization problem is then decomposed into two subproblems: resource allocation for terrestrial communications and satellite communications, which are both solved by matching algorithms. Finally, simulation results show the effectiveness of our proposed scheme in terms of STIN's sum rate and spectrum efficiency.

  • A Trade-Off between Memory Stability and Connection Sparsity in Simple Binary Associative Memories

    Kento SAKA  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Pubricized:
    2022/03/29
      Vol:
    E105-A No:9
      Page(s):
    1377-1380

    This letter studies a biobjective optimization problem in binary associative memories characterized by ternary connection parameters. First, we introduce a condition of parameters that guarantees storage of any desired memories and suppression of oscillatory behavior. Second, we define a biobjective problem based on two objectives that evaluate uniform stability of desired memories and sparsity of connection parameters. Performing precise numerical analysis for typical examples, we have clarified existence of a trade-off between the two objectives.

  • Altered Fingerprints Detection Based on Deep Feature Fusion

    Chao XU  Yunfeng YAN  Lehangyu YANG  Sheng LI  Guorui FENG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2022/06/13
      Vol:
    E105-D No:9
      Page(s):
    1647-1651

    The altered fingerprints help criminals escape from police and cause great harm to the society. In this letter, an altered fingerprint detection method is proposed. The method is constructed by two deep convolutional neural networks to train the time-domain and frequency-domain features. A spectral attention module is added to connect two networks. After the extraction network, a feature fusion module is then used to exploit relationship of two network features. We make ablation experiments and add the module proposed in some popular architectures. Results show the proposed method can improve the performance of altered fingerprint detection compared with the recent neural networks.

  • A Multi-Path Routing Method with Traffic Grooming Corresponding to Path Lengths in Elastic Optical Networks

    Motoi KATO  Ken-ichi BABA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1033-1038

    To accommodate an increasing amount of traffic efficiently, elastic optical networks (EON) that can use optical spectrum resources flexibly have been studied. We implement multi-path routing in case we cannot allocate the spectrum with single-path routing. However, multi-path routing requires more guard bands to avoid interference between two adjacent optical paths when compared with single-path routing in EON. A multi-path routing algorithm with traffic grooming technology has been proposed. The researchers assumed that a uniform modulation level was adopted, and so they did not consider the impact of path length on the resources needed. In this paper, we propose a multi-path routing method with traffic grooming considering path lengths. Our proposed method establishes an optical multi-path considering path length, fiber utilization, and the use of traffic grooming. Simulations show we can decrease the call-blocking probability by approximately 24.8% in NSFNET. We also demonstrate the effectiveness of traffic grooming and the improvement in the utilization ratio of optical spectrum resources.

  • Fast Gated Recurrent Network for Speech Synthesis

    Bima PRIHASTO  Tzu-Chiang TAI  Pao-Chi CHANG  Jia-Ching WANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2022/06/10
      Vol:
    E105-D No:9
      Page(s):
    1634-1638

    The recurrent neural network (RNN) has been used in audio and speech processing, such as language translation and speech recognition. Although RNN-based architecture can be applied to speech synthesis, the long computing time is still the primary concern. This research proposes a fast gated recurrent neural network, a fast RNN-based architecture, for speech synthesis based on the minimal gated unit (MGU). Our architecture removes the unit state history from some equations in MGU. Our MGU-based architecture is about twice faster, with equally good sound quality than the other MGU-based architectures.

  • Sensitivity Enhanced Edge-Cloud Collaborative Trust Evaluation in Social Internet of Things

    Peng YANG  Yu YANG  Puning ZHANG  Dapeng WU  Ruyan WANG  

     
    PAPER-Network Management/Operation

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1053-1062

    The integration of social networking concepts into the Internet of Things has led to the Social Internet of Things (SIoT) paradigm, and trust evaluation is essential to secure interaction in SIoT. In SIoT, when resource-constrained nodes respond to unexpected malicious services and malicious recommendations, the trust assessment is prone to be inaccurate, and the existing architecture has the risk of privacy leakage. An edge-cloud collaborative trust evaluation architecture in SIoT is proposed in this paper. Utilize the resource advantages of the cloud and the edge to complete the trust assessment task collaboratively. An evaluation algorithm of relationship closeness between nodes is designed to evaluate neighbor nodes' reliability in SIoT. A trust computing algorithm with enhanced sensitivity is proposed, considering the fluctuation of trust value and the conflict between trust indicators to enhance the sensitivity of identifying malicious behaviors. Simulation results show that compared with traditional methods, the proposed trust evaluation method can effectively improve the success rate of interaction and reduce the false detection rate when dealing with malicious services and malicious recommendations.

  • Diabetes Noninvasive Recognition via Improved Capsule Network

    Cunlei WANG  Donghui LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/06
      Vol:
    E105-D No:8
      Page(s):
    1464-1471

    Noninvasive recognition is an important trend in diabetes recognition. Unfortunately, the accuracy obtained from the conventional noninvasive recognition methods is low. This paper proposes a novel Diabetes Noninvasive Recognition method via the plantar pressure image and improved Capsule Network (DNR-CapsNet). The input of the proposed method is a plantar pressure image, and the output is the recognition result: healthy or possibly diabetes. The ResNet18 is used as the backbone of the convolutional layers to convert pixel intensities to local features in the proposed DNR-CapsNet. Then, the PrimaryCaps layer, SecondaryCaps layer, and DiabetesCaps layer are developed to achieve the diabetes recognition. The semantic fusion and locality-constrained dynamic routing are also developed to further improve the recognition accuracy in our method. The experimental results indicate that the proposed method has a better performance on diabetes noninvasive recognition than the state-of-the-art methods.

  • BFF R-CNN: Balanced Feature Fusion for Object Detection

    Hongzhe LIU  Ningwei WANG  Xuewei LI  Cheng XU  Yaze LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/17
      Vol:
    E105-D No:8
      Page(s):
    1472-1480

    In the neck part of a two-stage object detection network, feature fusion is generally carried out in either a top-down or bottom-up manner. However, two types of imbalance may exist: feature imbalance in the neck of the model and gradient imbalance in the region of interest extraction layer due to the scale changes of objects. The deeper the network is, the more abstract the learned features are, that is to say, more semantic information can be extracted. However, the extracted image background, spatial location, and other resolution information are less. In contrast, the shallow part can learn little semantic information, but a lot of spatial location information. We propose the Both Ends to Centre to Multiple Layers (BEtM) feature fusion method to solve the feature imbalance problem in the neck and a Multi-level Region of Interest Feature Extraction (MRoIE) layer to solve the gradient imbalance problem. In combination with the Region-based Convolutional Neural Network (R-CNN) framework, our Balanced Feature Fusion (BFF) method offers significantly improved network performance compared with the Faster R-CNN architecture. On the MS COCO 2017 dataset, it achieves an average precision (AP) that is 1.9 points and 3.2 points higher than those of the Feature Pyramid Network (FPN) Faster R-CNN framework and the Generic Region of Interest Extractor (GRoIE) framework, respectively.

  • A Slotted Access-Inspired Group Paging Scheme for Resource Efficiency in Cellular MTC Networks

    Linh T. HOANG  Anh-Tuan H. BUI  Chuyen T. NGUYEN  Anh T. PHAM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/14
      Vol:
    E105-B No:8
      Page(s):
    944-958

    Deployment of machine-type communications (MTCs) over the current cellular network could lead to severe overloading of the radio access network of Long Term Evolution (LTE)-based systems. This paper proposes a slotted access-based solution, called the Slotted Access For Group Paging (SAFGP), to cope with the paging-induced MTC traffic. The proposed SAFGP splits paged devices into multiple access groups, and each group is then allocated separate radio resources on the LTE's Physical Random Access Channel (PRACH) in a periodic manner during the paging interval. To support the proposed scheme, a new adaptive barring algorithm is proposed to stabilize the number of successful devices in each dedicated access slot. The objective is to let as few devices transmitting preambles in an access slot as possible while ensuring that the number of preambles selected by exactly one device approximates the maximum number of uplink grants that can be allocated by the eNB for an access slot. Analysis and simulation results demonstrate that, given the same amount of time-frequency resources, the proposed method significantly improves the access success and resource utilization rates at the cost of slightly increasing the access delay compared to state-of-the-art methods.

  • A Low-Cost Training Method of ReRAM Inference Accelerator Chips for Binarized Neural Networks to Recover Accuracy Degradation due to Statistical Variabilities

    Zian CHEN  Takashi OHSAWA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2022/01/31
      Vol:
    E105-C No:8
      Page(s):
    375-384

    A new software based in-situ training (SBIST) method to achieve high accuracies is proposed for binarized neural networks inference accelerator chips in which measured offsets in sense amplifiers (activation binarizers) are transformed into biases in the training software. To expedite this individual training, the initial values for the weights are taken from results of a common forming training process which is conducted in advance by using the offset fluctuation distribution averaged over the fabrication line. SPICE simulation inference results for the accelerator predict that the accuracy recovers to higher than 90% even when the amplifier offset is as large as 40mV only after a few epochs of the individual training.

  • Experimental Extraction Method for Primary and Secondary Parameters of Shielded-Flexible Printed Circuits

    Taiki YAMAGIWA  Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2022/02/28
      Vol:
    E105-B No:8
      Page(s):
    913-922

    In this paper, an experimental method is proposed for extracting the primary and secondary parameters of transmission lines with frequency dispersion. So far, there is no report of these methods being applied to transmission lines with frequency dispersion. This paper provides an experimental evaluation means of transmission lines with frequency dispersion and clarifies the issues when applying the proposed method. In the proposed experimental method, unnecessary components such as connectors are removed by using a simple de-embedding method. The frequency response of the primary and secondary parameters extracted by using the method reproduced all dispersion characteristics of a transmission line with frequency dispersion successfully. It is demonstrated that an accurate RLGC equivalent-circuit model is obtained experimentally, which can be used to quantitatively evaluate the frequency/time responses of shielded-FPC with frequency dispersion and to validate RLGC equivalent-circuit models extracted by using electromagnetic field analysis.

  • Deep Learning Based Low Complexity Symbol Detection and Modulation Classification Detector

    Chongzheng HAO  Xiaoyu DANG  Sai LI  Chenghua WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/24
      Vol:
    E105-B No:8
      Page(s):
    923-930

    This paper presents a deep neural network (DNN) based symbol detection and modulation classification detector (SDMCD) for mixed blind signals detection. Unlike conventional methods that employ symbol detection after modulation classification, the proposed SDMCD can perform symbol recovery and modulation identification simultaneously. A cumulant and moment feature vector is presented in conjunction with a low complexity sparse autoencoder architecture to complete mixed signals detection. Numerical results show that SDMCD scheme has remarkable symbol error rate performance and modulation classification accuracy for various modulation formats in AWGN and Rayleigh fading channels. Furthermore, the proposed detector has robust performance under the impact of frequency and phase offsets.

  • Convolutional Neural Networks Based Dictionary Pair Learning for Visual Tracking

    Chenchen MENG  Jun WANG  Chengzhi DENG  Yuanyun WANG  Shengqian WANG  

     
    PAPER-Vision

      Pubricized:
    2022/02/21
      Vol:
    E105-A No:8
      Page(s):
    1147-1156

    Feature representation is a key component of most visual tracking algorithms. It is difficult to deal with complex appearance changes with low-level hand-crafted features due to weak representation capacities of such features. In this paper, we propose a novel tracking algorithm through combining a joint dictionary pair learning with convolutional neural networks (CNN). We utilize CNN model that is trained on ImageNet-Vid to extract target features. The CNN includes three convolutional layers and two fully connected layers. A dictionary pair learning follows the second fully connected layer. The joint dictionary pair is learned upon extracted deep features by the trained CNN model. The temporal variations of target appearances are learned in the dictionary learning. We use the learned dictionaries to encode target candidates. A linear combination of atoms in the learned dictionary is used to represent target candidates. Extensive experimental evaluations on OTB2015 demonstrate the superior performances against SOTA trackers.

  • A Hybrid Genetic Service Mining Method Based on Trace Clustering Population

    Yahui TANG  Tong LI  Rui ZHU  Cong LIU  Shuaipeng ZHANG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2022/04/28
      Vol:
    E105-D No:8
      Page(s):
    1443-1455

    Service mining aims to use process mining for the analysis of services, making it possible to discover, analyze, and improve service processes. In the context of Web services, the recording of all kinds of events related to activities is possible, which can be used to extract new information of service processes. However, the distributed nature of the services tends to generate large-scale service event logs, which complicates the discovery and analysis of service processes. To solve this problem, this research focus on the existing large-scale service event logs, a hybrid genetic service mining based on a trace clustering population method (HGSM) is proposed. By using trace clustering, the complex service system is divided into multiple functionally independent components, thereby simplifying the mining environment; And HGSM improves the mining efficiency of the genetic mining algorithm from the aspects of initial population quality improvement and genetic operation improvement, makes it better handle large service event logs. Experimental results demonstrate that compare with existing state-of-the-art mining methods, HGSM has better characteristics to handle large service event logs, in terms of both the mining efficiency and model quality.

  • Short-Term Stock Price Prediction by Supervised Learning of Rapid Volume Decrease Patterns

    Jangmin OH  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/05/20
      Vol:
    E105-D No:8
      Page(s):
    1431-1442

    Recently several researchers have proposed various methods to build intelligent stock trading and portfolio management systems using rapid advancements in artificial intelligence including machine learning techniques. However, existing technical analysis-based stock price prediction studies primarily depend on price change or price-related moving average patterns, and information related to trading volume is only used as an auxiliary indicator. This study focuses on the effect of changes in trading volume on stock prices and proposes a novel method for short-term stock price predictions based on trading volume patterns. Two rapid volume decrease patterns are defined based on the combinations of multiple volume moving averages. The dataset filtered using these patterns is learned through the supervised learning of neural networks. Experimental results based on the data from Korea Composite Stock Price Index and Korean Securities Dealers Automated Quotation, show that the proposed prediction system can achieve a trading performance that significantly exceeds the market average.

  • Minimal Paths in a Bicube

    Masaaki OKADA  Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/04/22
      Vol:
    E105-D No:8
      Page(s):
    1383-1392

    Nowadays, a rapid increase of demand on high-performance computation causes the enthusiastic research activities regarding massively parallel systems. An interconnection network in a massively parallel system interconnects a huge number of processing elements so that they can cooperate to process tasks by communicating among others. By regarding a processing element and a link between a pair of processing elements as a node and an edge, respectively, many problems with respect to communication and/or routing in an interconnection network are reducible to the problems in the graph theory. For interconnection networks of the massively parallel systems, many topologies have been proposed so far. The hypercube is a very popular topology and it has many variants. The bicube is a such topology and it can interconnect the same number of nodes with the same degree as the hypercube while its diameter is almost half of that of the hypercube. In addition, the bicube keeps the node-symmetric property. Hence, we focus on the bicube and propose an algorithm that gives a minimal or shortest path between an arbitrary pair of nodes. We give a proof of correctness of the algorithm and demonstrate its execution.

  • Performance Evaluation of a Hash-Based Countermeasure against Fake Message Attacks in Sparse Mobile Ad Hoc Networks

    Yuki SHIMIZU  Tomotaka KIMURA  Jun CHENG  

     
    PAPER-Network

      Pubricized:
    2021/12/24
      Vol:
    E105-B No:7
      Page(s):
    833-847

    In this study, we consider fake message attacks in sparse mobile ad hoc networks, in which nodes are chronically isolated. In these networks, messages are delivered to their destination nodes using store-carry-forward routing, where they are relayed by some nodes. Therefore, when a node has messages in its buffer, it can falsify the messages easily. When malicious nodes exist in the network, they alter messages to create fake messages, and then they launch fake message attacks, that is, the fake messages are spread over the network. To analyze the negative effects of a fake message attack, we model the system dynamics without attack countermeasures using a Markov chain, and then formalize some performance metrics (i.e., the delivery probability, mean delivery delay, and mean number of forwarded messages). This analysis is useful for designing countermeasures. Moreover, we consider a hash-based countermeasure against fake message attacks using a hash of the message. Whenever a node that has a message and its hash encounters another node, it probabilistically forwards only one of them to the encountered node. By doing this, the message and the hash value can be delivered to the destination node via different relay nodes. Therefore, even if the destination node receives a fake message, it can verify the legitimacy of the received message. Through simulation experiments, we evaluate the effectiveness of the hash-based countermeasure.

  • Detection and Tracking Method for Dynamic Barcodes Based on a Siamese Network

    Menglong WU  Cuizhu QIN  Hongxia DONG  Wenkai LIU  Xiaodong NIE  Xichang CAI  Yundong LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/13
      Vol:
    E105-B No:7
      Page(s):
    866-875

    In many screen to camera communication (S2C) systems, the barcode preprocessing method is a significant prerequisite because barcodes may be deformed due to various environmental factors. However, previous studies have focused on barcode detection under static conditions; to date, few studies have been carried out on dynamic conditions (for example, the barcode video stream or the transmitter and receiver are moving). Therefore, we present a detection and tracking method for dynamic barcodes based on a Siamese network. The backbone of the CNN in the Siamese network is improved by SE-ResNet. The detection accuracy achieved 89.5%, which stands out from other classical detection networks. The EAO reaches 0.384, which is better than previous tracking methods. It is also superior to other methods in terms of accuracy and robustness. The SE-ResNet in this paper improved the EAO by 1.3% compared with ResNet in SiamMask. Also, our method is not only applicable to static barcodes but also allows real-time tracking and segmentation of barcodes captured in dynamic situations.

  • A Hybrid Bayesian-Convolutional Neural Network for Adversarial Robustness

    Thi Thu Thao KHONG  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/04/11
      Vol:
    E105-D No:7
      Page(s):
    1308-1319

    We introduce a hybrid Bayesian-convolutional neural network (hyBCNN) for improving the robustness against adversarial attacks and decreasing the computation time in the Bayesian inference phase. Our hyBCNN models are built from a part of BNN and CNN. Based on pre-trained CNNs, we only replace convolutional layers and activation function of the initial stage of CNNs with our Bayesian convolutional (BC) and Bayesian activation (BA) layers as a term of transfer learning. We keep the remainder of CNNs unchanged. We adopt the Bayes without Bayesian Learning (BwoBL) algorithm for hyBCNN networks to execute Bayesian inference towards adversarial robustness. Our proposal outperforms adversarial training and robust activation function, which are currently the outstanding defense methods of CNNs in the resistance to adversarial attacks such as PGD and C&W. Moreover, the proposed architecture with BwoBL can easily integrate into any pre-trained CNN, especially in scaling networks, e.g., ResNet and EfficientNet, with better performance on large-scale datasets. In particular, under l∞ norm PGD attack of pixel perturbation ε=4/255 with 100 iterations on ImageNet, our best hyBCNN EfficientNet reaches 93.92% top-5 accuracy without additional training.

281-300hit(6055hit)