The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] object(435hit)

81-100hit(435hit)

  • A Spectrum-Sharing Approach in Heterogeneous Networks Based on Multi-Objective Optimization

    Runze WU  Jiajia ZHU  Liangrui TANG  Chen XU  Xin WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/27
      Vol:
    E100-B No:7
      Page(s):
    1145-1151

    Deploying low power nodes (LPNs), which reuse the spectrum licensed to a macrocell network, is considered to be a promising way to significantly boost network capacity. Due to the spectrum-sharing, the deployment of LPNs could trigger the severe problem of interference including intra-tier interference among dense LPNs and inter-tier interference between LPNs and the macro base station (MBS), which influences the system performance strongly. In this paper, we investigate a spectrum-sharing approach in the downlink for two-tier networks, which consists of small cells (SCs) with several LPNs and a macrocell with a MBS, aiming to mitigate the interference and improve the capacity of SCs. The spectrum-sharing approach is described as a multi-objective optimization problem. The problem is solved by the nondominated sorting genetic algorithm version II (NSGA-II), and the simulations show that the proposed spectrum-sharing approach is superior to the existing one.

  • Deep Correlation Tracking with Backtracking

    Yulong XU  Yang LI  Jiabao WANG  Zhuang MIAO  Hang LI  Yafei ZHANG  Gang TAO  

     
    LETTER-Vision

      Vol:
    E100-A No:7
      Page(s):
    1601-1605

    Feature extractor is an important component of a tracker and the convolutional neural networks (CNNs) have demonstrated excellent performance in visual tracking. However, the CNN features cannot perform well under conditions of low illumination. To address this issue, we propose a novel deep correlation tracker with backtracking, which consists of target translation, backtracking and scale estimation. We employ four correlation filters, one with a histogram of oriented gradient (HOG) descriptor and the other three with the CNN features to estimate the translation. In particular, we propose a backtracking algorithm to reconfirm the translation location. Comprehensive experiments are performed on a large-scale challenging benchmark dataset. And the results show that the proposed algorithm outperforms state-of-the-art methods in accuracy and robustness.

  • Verifying Scenarios of Proximity-Based Federations among Smart Objects through Model Checking and Its Advantages

    Reona MINODA  Shin-ichi MINATO  

     
    PAPER-Formal techniques

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1172-1181

    This paper proposes a formal approach of verifying ubiquitous computing application scenarios. Ubiquitous computing application scenarios assume that there are a lot of devices and physical things with computation and communication capabilities, which are called smart objects, and these are interacted with each other. Each of these interactions among smart objects is called “federation”, and these federations form a ubiquitous computing application scenario. Previously, Yuzuru Tanaka proposed “a proximity-based federation model among smart objects”, which is intended for liberating ubiquitous computing from stereotyped application scenarios. However, there are still challenges to establish the verification method of this model. This paper proposes a verification method of this model through model checking. Model checking is one of the most popular formal verification approach and it is often used in various fields of industry. Model checking is conducted using a Kripke structure which is a formal state transition model. We introduce a context catalytic reaction network (CCRN) to handle this federation model as a formal state transition model. We also give an algorithm to transform a CCRN into a Kripke structure and we conduct a case study of ubiquitous computing scenario verification, using this algorithm and the model checking. Finally, we discuss the advantages of our formal approach by showing the difficulties of our target problem experimentally.

  • Construction of Latent Descriptor Space and Inference Model of Hand-Object Interactions

    Tadashi MATSUO  Nobutaka SHIMADA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/03/13
      Vol:
    E100-D No:6
      Page(s):
    1350-1359

    Appearance-based generic object recognition is a challenging problem because all possible appearances of objects cannot be registered, especially as new objects are produced every day. Function of objects, however, has a comparatively small number of prototypes. Therefore, function-based classification of new objects could be a valuable tool for generic object recognition. Object functions are closely related to hand-object interactions during handling of a functional object; i.e., how the hand approaches the object, which parts of the object and contact the hand, and the shape of the hand during interaction. Hand-object interactions are helpful for modeling object functions. However, it is difficult to assign discrete labels to interactions because an object shape and grasping hand-postures intrinsically have continuous variations. To describe these interactions, we propose the interaction descriptor space which is acquired from unlabeled appearances of human hand-object interactions. By using interaction descriptors, we can numerically describe the relation between an object's appearance and its possible interaction with the hand. The model infers the quantitative state of the interaction from the object image alone. It also identifies the parts of objects designed for hand interactions such as grips and handles. We demonstrate that the proposed method can unsupervisedly generate interaction descriptors that make clusters corresponding to interaction types. And also we demonstrate that the model can infer possible hand-object interactions.

  • A Continuous Query Indexing Method for Location Based Services in Broadcast Environments

    Kyoungsoo BOK  Yonghun PARK  Jaesoo YOO  

     
    PAPER-Network System

      Pubricized:
    2016/12/01
      Vol:
    E100-B No:5
      Page(s):
    702-710

    Recently, several methods to process continuous queries for mobile objects in broadcast environments have been proposed. We propose a new indexing method for processing continuous queries that uses vector information in broadcast environments. We separate the index structure according to the velocities of the objects to avoid unnecessary accesses. The index structure consists of the index files for the slow moving objects and the fast moving objects. By avoiding unnecessary accesses, we reduce the tuning time to process a query in broadcast environments. To show the superiority of the proposed method, we evaluate its performance from various perspectives.

  • Survey of Cloud-Based Content Sharing Research: Taxonomy of System Models and Case Examples Open Access

    Shinji SUGAWARA  

     
    INVITED SURVEY PAPER-Network System

      Pubricized:
    2016/10/21
      Vol:
    E100-B No:4
      Page(s):
    484-499

    This paper illustrates various content sharing systems that take advantage of cloud's storage and computational resources as well as their supporting conventional technologies. First, basic technology concepts supporting cloud-based systems from a client-server to cloud computing as well as their relationships and functional linkages are shown. Second, the taxonomy of cloud-based system models from the aspect of multiple clouds' interoperability is explained. Interoperability can be categorized into provider-centric and client-centric scenarios. Each can be further divided into federated clouds, hybrid clouds, multi-clouds and aggregated service by broker. Third, practical cloud-based systems related to contents sharing are reported and their characteristics are discussed. Finally, future direction of cloud-based content sharing is suggested.

  • Phoneme Set Design Based on Integrated Acoustic and Linguistic Features for Second Language Speech Recognition

    Xiaoyun WANG  Tsuneo KATO  Seiichi YAMAMOTO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/12/29
      Vol:
    E100-D No:4
      Page(s):
    857-864

    Recognition of second language (L2) speech is a challenging task even for state-of-the-art automatic speech recognition (ASR) systems, partly because pronunciation by L2 speakers is usually significantly influenced by the mother tongue of the speakers. Considering that the expressions of non-native speakers are usually simpler than those of native ones, and that second language speech usually includes mispronunciation and less fluent pronunciation, we propose a novel method that maximizes unified acoustic and linguistic objective function to derive a phoneme set for second language speech recognition. The authors verify the efficacy of the proposed method using second language speech collected with a translation game type dialogue-based computer assisted language learning (CALL) system. In this paper, the authors examine the performance based on acoustic likelihood, linguistic discrimination ability and integrated objective function for second language speech. Experiments demonstrate the validity of the phoneme set derived by the proposed method.

  • Semantic Motion Signature for Segmentation of High Speed Large Displacement Objects

    Yinhui ZHANG  Zifen HE  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/10/05
      Vol:
    E100-D No:1
      Page(s):
    220-224

    This paper presents a novel method for unsupervised segmentation of objects with large displacements in high speed video sequences. Our general framework introduces a new foreground object predicting method that finds object hypotheses by encoding both spatial and temporal features via a semantic motion signature scheme. More specifically, temporal cues of object hypotheses are captured by the motion signature proposed in this paper, which is derived from sparse saliency representation imposed on magnitude of optical flow field. We integrate semantic scores derived from deep networks with location priors that allows us to directly estimate appearance potentials of foreground hypotheses. A unified MRF energy functional is proposed to simultaneously incorporate the information from the motion signature and semantic prediction features. The functional enforces both spatial and temporal consistency and impose appearance constancy and spatio-temporal smoothness constraints directly on the object hypotheses. It inherently handles the challenges of segmenting ambiguous objects with large displacements in high speed videos. Our experiments on video object segmentation benchmarks demonstrate the effectiveness of the proposed method for segmenting high speed objects despite the complicated scene dynamics and large displacements.

  • Multiple Object Segmentation in Videos Using Max-Flow Decomposition

    Yihang BO  Hao JIANG  

     
    PAPER-Vision

      Vol:
    E99-A No:12
      Page(s):
    2547-2557

    In this paper, we propose a novel decomposition method to segment multiple object regions simultaneously in cluttered videos. This method formulates object regions segmentation as a labeling problem in which we assign object IDs to the superpixels in a sequence of video frames so that the unary color matching cost is low, the assignment induces compact segments, and the superpixel labeling is consistent through time. Multi-object segmentation in a video is a combinatorial problem. We propose a binary linear formulation. Since the integer linear programming is hard to solve directly, we relax it and further decompose the relaxation into a sequence of much simpler max-flow problems. The proposed method is guaranteed to converge in a finite number of steps to the global optimum of the relaxation. It also has a high chance to obtain all integer solution and therefore achieves the global optimum. The rounding of the relaxation result gives an N-approximation solution, where N is the number of objects. Comparing to directly solving the integer program, the novel decomposition method speeds up the computation by orders of magnitude. Our experiments show that the proposed method is robust against object pose variation, occlusion and is more accurate than the competing methods while at the same time maintains the efficiency.

  • An Efficient Algorithm of Discrete Particle Swarm Optimization for Multi-Objective Task Assignment

    Nannan QIAO  Jiali YOU  Yiqiang SHENG  Jinlin WANG  Haojiang DENG  

     
    PAPER-Distributed system

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    2968-2977

    In this paper, a discrete particle swarm optimization method is proposed to solve the multi-objective task assignment problem in distributed environment. The objectives of optimization include the makespan for task execution and the budget caused by resource occupation. A two-stage approach is designed as follows. In the first stage, several artificial particles are added into the initialized swarm to guide the search direction. In the second stage, we redefine the operators of the discrete PSO to implement addition, subtraction and multiplication. Besides, a fuzzy-cost-based elite selection is used to improve the computational efficiency. Evaluation shows that the proposed algorithm achieves Pareto improvement in comparison to the state-of-the-art algorithms.

  • On-Line Rigid Object Tracking via Discriminative Feature Classification

    Quan MIAO  Chenbo SHI  Long MENG  Guang CHENG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/08/03
      Vol:
    E99-D No:11
      Page(s):
    2824-2827

    This paper proposes an on-line rigid object tracking framework via discriminative object appearance modeling and learning. Strong classifiers are combined with 2D scale-rotation invariant local features to treat tracking as a keypoint matching problem. For on-line boosting, we correspond a Gaussian mixture model (GMM) to each weak classifier and propose a GMM-based classifying mechanism. Meanwhile, self-organizing theory is applied to perform automatic clustering for sequential updating. Benefiting from the invariance of the SURF feature and the proposed on-line classifying technique, we can easily find reliable matching pairs and thus perform accurate and stable tracking. Experiments show that the proposed method achieves better performance than previously reported trackers.

  • Object Detection Based on Image Blur Evaluated by Discrete Fourier Transform and Haar-Like Features

    Ryusuke MIYAMOTO  Shingo KOBAYASHI  

     
    PAPER-Image

      Vol:
    E99-A No:11
      Page(s):
    1990-1999

    In general, in-focus images are used in visual object detection because image blur is considered as a factor reducing detection accuracy. However, in-focus images make it difficult to separate target objects from background images, because of that, visual object detection becomes a hard task. Background subtraction and inter-frame difference are famous schemes for separating target objects from background but they have a critical disadvantage that they cannot be used if illumination changes or the point of view moves. Considering these problems, the authors aim to improve detection accuracy by using images with out-of-focus blur obtained from a camera with a shallow depth of field. In these images, it is expected that target objects become in-focus and other regions are blurred. To enable visual object detection based on such image blur, this paper proposes a novel scheme using DFT-based feature extraction. The experimental results using synthetic images including, circle, star, and square objects as targets showed that a classifier constructed by the proposed scheme showed 2.40% miss rate at 0.1 FPPI and perfect detection has been achieved for detection of star and square objects. In addition, the proposed scheme achieved perfect detection of humans in natural images when the upper half of the human body was trained. The accuracy of the proposed scheme is better than the Filtered Channel Features, one of the state-of-the-art schemes for visual object detection. Analyzing the result, it is convincing that the proposed scheme is very feasible for visual object detection based on image blur.

  • An Improved PSO Algorithm for Interval Multi-Objective Optimization Systems

    Yong ZHANG  Wanqiu ZHANG  Dunwei GONG  Yinan GUO  Leida LI  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2016/06/01
      Vol:
    E99-D No:9
      Page(s):
    2381-2384

    Considering an uncertain multi-objective optimization system with interval coefficients, this letter proposes an interval multi-objective particle swarm optimization algorithm. In order to improve its performance, a crowding distance measure based on the distance and the overlap degree of intervals, and a method of updating the archive based on the acceptance coefficient of decision-maker, are employed. Finally, results show that our algorithm is capable of generating excellent approximation of the true Pareto front.

  • RTCO: Reliable Tracking for Continuous Objects Using Redundant Boundary Information in Wireless Sensor Networks

    Sang-Wan KIM  Yongbin YIM  Hosung PARK  Ki-Dong NAM  Sang-Ha KIM  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1464-1480

    Energy-efficient tracking of continuous objects such as fluids, gases, and wild fires is one of the important challenging issues in wireless sensor networks. Many studies have focused on electing fewer nodes to report the boundary information of continuous objects for energy saving. However, this approach of using few reporting packets is very sensitive to packet loss. Many applications based on continuous objects tracking require timely and precise boundary information due to the danger posed by the objects. When transmission of reporting packets fails, applications are unable to track the boundary reliably and a delay is imposed to recover. The transmission failure can fatally degrade application performance. Thus, it is necessary to consider just-in-time recovery for reliable continuous object tracking. Nevertheless, most schemes did not consider the reliable tracking to handle the situation that packet loss happen. Recently, a scheme called I-COD with retransmission was proposed to recover lost packets but it leads to increasing both the energy consumption and the tracking latency owing to the retransmission. Thus, we propose a reliable tracking scheme that uses fast recovery with the redundant boundary information to track continuous objects in real-time and energy-efficiently. In the proposed scheme, neighbor nodes of boundary nodes gather the boundary information in duplicate and report the redundant boundary information. Then the sink node can recover the lost packets fast by using the redundant boundary information. The proposed scheme provides the reliable tracking with low latency and no retransmissions. In addition, the proposed scheme saves the energy by electing fewer nodes to report the boundary information and performing the recovery without retransmissions. Our simulation results show that the proposed scheme provides the energy-efficient and reliable tracking in real-time for the continuous objects.

  • Efficient Residual Coding Method of Spatial Audio Object Coding with Two-Step Coding Structure for Interactive Audio Services

    Byonghwa LEE  Kwangki KIM  Minsoo HAHN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2016/04/08
      Vol:
    E99-D No:7
      Page(s):
    1949-1952

    In interactive audio services, users can render audio objects rather freely to match their desires and the spatial audio object coding (SAOC) scheme is fairly good both in the sense of bitrate and audio quality. But rather perceptible audio quality degradation can occur when an object is suppressed or played alone. To complement this, the SAOC scheme with Two-Step Coding (SAOC-TSC) was proposed. But the bitrate of the side information increases two times compared to that of the original SAOC due to the bitrate needed for the residual coding used to enhance the audio quality. In this paper, an efficient residual coding method of the SAOC-TSC is proposed to reduce the side information bitrate without audio quality degradation or complexity increase.

  • Multiple-Object Tracking in Large-Scale Scene

    Wenbo YUAN  Zhiqiang CAO  Min TAN  Hongkai CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/04/21
      Vol:
    E99-D No:7
      Page(s):
    1903-1909

    In this paper, a multiple-object tracking approach in large-scale scene is proposed based on visual sensor network. Firstly, the object detection is carried out by extracting the HOG features. Then, object tracking is performed based on an improved particle filter method. On the one hand, a kind of temporal and spatial dynamic model is designed to improve the tracking precision. On the other hand, the cumulative error generated from evaluating particles is eliminated through an appearance model. In addition, losses of the tracking will be incurred for several reasons, such as occlusion, scene switching and leaving. When the object is in the scene under monitoring by visual sensor network again, object tracking will continue through object re-identification. Finally, continuous multiple-object tracking in large-scale scene is implemented. A database is established by collecting data through the visual sensor network. Then the performances of object tracking and object re-identification are tested. The effectiveness of the proposed multiple-object tracking approach is verified.

  • A Novel Time Delay Estimation Interpolation Algorithm Based on Second-Order Cone Programming

    Zhixin LIU  Dexiu HU  Yongjun ZHAO  Chengcheng LIU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:6
      Page(s):
    1311-1317

    Considering the obvious bias of the traditional interpolation method, a novel time delay estimation (TDE) interpolation method with sub-sample accuracy is presented in this paper. The proposed method uses a generalized extended approximation method to obtain the objection function. Then the optimized interpolation curve is generated by Second-order Cone programming (SOCP). Finally the optimal TDE can be obtained by interpolation curve. The delay estimate of proposed method is not forced to lie on discrete samples and the sample points need not to be on the interpolation curve. In the condition of the acceptable computation complexity, computer simulation results clearly indicate that the proposed method is less biased and outperforms the other interpolation algorithms in terms of estimation accuracy.

  • Robust Object Tracking with Compressive Sensing and Patches Matching

    Jiatian PI  Keli HU  Xiaolin ZHANG  Yuzhang GU  Yunlong ZHAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/26
      Vol:
    E99-D No:6
      Page(s):
    1720-1723

    Object tracking is one of the fundamental problems in computer vision. However, there is still a need to improve the overall capability in various tracking circumstances. In this letter, a patches-collaborative compressive tracking (PCCT) algorithm is presented. Experiments on various challenging benchmark sequences demonstrate that the proposed algorithm performs favorably against several state-of-the-art algorithms.

  • Cultivating Listening Skills for Academic English Based on Strategy Object Mashups Approach

    Hangyu LI  Hajime KIRA  Shinobu HASEGAWA  

     
    PAPER-Educational Technology

      Pubricized:
    2016/03/22
      Vol:
    E99-D No:6
      Page(s):
    1615-1625

    This paper aims to support the cultivation of proper cognitive skills for academic English listening. First of all, this paper identified several listening strategies proved to be effective for cultivating listening skills through past research and builds up the respective strategy models, based on which we designed and developed various functional units as strategy objects, and the mashup environment where these function units can be assembled to serve as a personal learning environment. We also attached listening strategies and tactics to each object, in order to make learners aware of the related strategies and tactics applied during learning. Both short-term and mid-term case studies were carried out, and the data collected showed several positive results and some interesting indications.

  • Non-Linear Extension of Generalized Hyperplane Approximation

    Hyun-Chul CHOI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/29
      Vol:
    E99-D No:6
      Page(s):
    1707-1710

    A non-linear extension of generalized hyperplane approximation (GHA) method is introduced in this letter. Although GHA achieved a high-confidence result in motion parameter estimation by utilizing the supervised learning scheme in histogram of oriented gradient (HOG) feature space, it still has unstable convergence range because it approximates the non-linear function of regression from the feature space to the motion parameter space as a linear plane. To extend GHA into a non-linear regression for larger convergence range, we derive theoretical equations and verify this extension's effectiveness and efficiency over GHA by experimental results.

81-100hit(435hit)