The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] parse(213hit)

161-180hit(213hit)

  • Supervised Single-Channel Speech Separation via Sparse Decomposition Using Periodic Signal Models

    Makoto NAKASHIZUKA  Hiroyuki OKUMURA  Youji IIGUNI  

     
    PAPER-Engineering Acoustics

      Vol:
    E95-A No:5
      Page(s):
    853-866

    In this paper, we propose a method for supervised single-channel speech separation through sparse decomposition using periodic signal models. The proposed separation method employs sparse decomposition, which decomposes a signal into a set of periodic signals under a sparsity penalty. In order to achieve separation through sparse decomposition, the decomposed periodic signals have to be assigned to the corresponding sources. For the assignment of the periodic signal, we introduce clustering using a K-means algorithm to group the decomposed periodic signals into as many clusters as the number of speakers. After the clustering, each cluster is assigned to its corresponding speaker using preliminarily learnt codebooks. Through separation experiments, we compare our method with MaxVQ, which performs separation on the frequency spectrum domain. The experimental results in terms of signal-to-distortion ratio show that the proposed sparse decomposition method is comparable to the frequency domain approach and has less computational costs for assignment of speech components.

  • Registration Method of Sparse Representation Classification Method

    Jing WANG  Guangda SU  

     
    LETTER-Image Processing

      Vol:
    E95-D No:5
      Page(s):
    1332-1335

    Sparse representation based classification (SRC) has emerged as a new paradigm for solving face recognition problems. Further research found that the main limitation of SRC is the assumption of pixel-accurate alignment between the test image and the training set. A. Wagner used a series of linear programs that iteratively minimize the sparsity of the registration error. In this paper, we propose another face registration method called three-point positioning method. Experiments show that our proposed method achieves better performance.

  • Compressive Sampling for Remote Control Systems

    Masaaki NAGAHARA  Takahiro MATSUDA  Kazunori HAYASHI  

     
    PAPER

      Vol:
    E95-A No:4
      Page(s):
    713-722

    In remote control, efficient compression or representation of control signals is essential to send them through rate-limited channels. For this purpose, we propose an approach of sparse control signal representation using the compressive sampling technique. The problem of obtaining sparse representation is formulated by cardinality-constrained 2 optimization of the control performance, which is reducible to 1-2 optimization. The low rate random sampling employed in the proposed method based on the compressive sampling, in addition to the fact that the 1-2 optimization can be effectively solved by a fast iteration method, enables us to generate the sparse control signal with reduced computational complexity, which is preferable in remote control systems where computation delays seriously degrade the performance. We give a theoretical result for control performance analysis based on the notion of restricted isometry property (RIP). An example is shown to illustrate the effectiveness of the proposed approach via numerical experiments.

  • JTAR: Junction-Based Traffic Aware Routing in Sparse Urban VANETs

    Haifeng SUN  Guangchun LUO  Hao CHEN  

     
    LETTER-Network

      Vol:
    E95-B No:3
      Page(s):
    1007-1010

    We propose a Junction-Based Traffic Aware Routing (JTAR) protocol for Vehicular Ad Hoc Networks (VANETs) in sparse urban environments. A traffic aware optimum junction selection solution is adopted in packet-forwarding, and a metric named critical-segment is defined in recovery strategy. Simulation results show that JTAR can efficiently increase the packet delivery ratio and reduce the delivery delay.

  • Dictionary-Based Map Compression for Sparse Feature Maps

    Kanji TANAKA  Tomomi NAGASAKA  

     
    PAPER-Pattern Recognition

      Vol:
    E95-D No:2
      Page(s):
    604-613

    Obtaining a compact representation of a large-size feature map built by mapper robots is a critical issue in recent mobile robotics. This “map compression” problem is explored from a novel perspective of dictionary-based data compression techniques in the paper. The primary contribution of the paper is the proposal of the dictionary-based map compression approach. A map compression system is presented by employing RANSAC map matching and sparse coding as building blocks. The effectiveness levels of the proposed techniques is investigated in terms of map compression ratio, compression speed, the retrieval performance of compressed/decompressed maps, as well as applications to the Kolmogorov complexity.

  • SAR Tomography Imaging Using Sparse Bayesian Learning

    Rui MIN  Yating HU  Yiming PI  Zongjie CAO  

     
    LETTER-Sensing

      Vol:
    E95-B No:1
      Page(s):
    354-357

    Tomo-SAR imaging with sparse baselines can be formulated as a sparse signal recovery problem, which suggests the use of the Compressive Sensing (CS) method. In this paper, a novel Tomo-SAR imaging approach based on Sparse Bayesian Learning (SBL) is presented to obtain super-resolution in elevation direction and is validated by simulation results.

  • Least Squares Constant Modulus Blind Adaptive Beamforming with Sparse Constraint

    Jun LI  Hongbo XU  Hongxing XIA  Fan LIU  Bo LI  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:1
      Page(s):
    313-316

    Beamforming with sparse constraint has shown significant performance improvement. In this letter, a least squares constant modulus blind adaptive beamforming with sparse constraint is proposed. Simulation results indicate that the proposed approach exhibits better performance than the well-known least squares constant modulus algorithm (LSCMA).

  • Robust DOA Estimation for Uncorrelated and Coherent Signals

    Hui CHEN  Qun WAN  Hongyang CHEN  Tomoaki OHTSUKI  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:10
      Page(s):
    2035-2038

    A new direction of arrival (DOA) estimation method is introduced with arbitrary array geometry when uncorrelated and coherent signals coexist. The DOAs of uncorrelated signals are first estimated via subspace-based high resolution DOA estimation technique. Then a matrix that only contains the information of coherent signals can be formulated by eliminating the contribution of uncorrelated signals. Finally a subspace block sparse reconstruction approach is taken for DOA estimations of the coherent signals.

  • Cross Low-Dimension Pursuit for Sparse Signal Recovery from Incomplete Measurements Based on Permuted Block Diagonal Matrix

    Zaixing HE  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:9
      Page(s):
    1793-1803

    In this paper, a novel algorithm, Cross Low-dimension Pursuit, based on a new structured sparse matrix, Permuted Block Diagonal (PBD) matrix, is proposed in order to recover sparse signals from incomplete linear measurements. The main idea of the proposed method is using the PBD matrix to convert a high-dimension sparse recovery problem into two (or more) groups of highly low-dimension problems and crossly recover the entries of the original signal from them in an iterative way. By sampling a sufficiently sparse signal with a PBD matrix, the proposed algorithm can recover it efficiently. It has the following advantages over conventional algorithms: (1) low complexity, i.e., the algorithm has linear complexity, which is much lower than that of existing algorithms including greedy algorithms such as Orthogonal Matching Pursuit and (2) high recovery ability, i.e., the proposed algorithm can recover much less sparse signals than even 1-norm minimization algorithms. Moreover, we demonstrate both theoretically and empirically that the proposed algorithm can reliably recover a sparse signal from highly incomplete measurements.

  • Global Selection vs Local Ordering of Color SIFT Independent Components for Object/Scene Classification

    Dan-ni AI  Xian-hua HAN  Guifang DUAN  Xiang RUAN  Yen-wei CHEN  

     
    PAPER-Pattern Recognition

      Vol:
    E94-D No:9
      Page(s):
    1800-1808

    This paper addresses the problem of ordering the color SIFT descriptors in the independent component analysis for image classification. Component ordering is of great importance for image classification, since it is the foundation of feature selection. To select distinctive and compact independent components (IC) of the color SIFT descriptors, we propose two ordering approaches based on local variation, named as the localization-based IC ordering and the sparseness-based IC ordering. We evaluate the performance of proposed methods, the conventional IC selection method (global variation based components selection) and original color SIFT descriptors on object and scene databases, and obtain the following two main results. First, the proposed methods are able to obtain acceptable classification results in comparison with original color SIFT descriptors. Second, the highest classification rate can be obtained by using the global selection method in the scene database, while the local ordering methods give the best performance for the object database.

  • Spectral Analysis of Random Sparse Matrices

    Tomonori ANDO  Yoshiyuki KABASHIMA  Hisanao TAKAHASHI  Osamu WATANABE  Masaki YAMAMOTO  

     
    PAPER

      Vol:
    E94-A No:6
      Page(s):
    1247-1256

    We study nn random symmetric matrices whose entries above the diagonal are iid random variables each of which takes 1 with probability p and 0 with probability 1-p, for a given density parameter p=α/n for sufficiently large α. For a given such matrix A, we consider a matrix A ' that is obtained by removing some rows and corresponding columns with too many value 1 entries. Then for this A', we show that the largest eigenvalue is asymptotically close to α+1 and its eigenvector is almost parallel to all one vector (1,...,1).

  • Exploration into Single Image Super-Resolution via Self Similarity by Sparse Representation

    Lv GUO  Yin LI  Jie YANG  Li LU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:11
      Page(s):
    3144-3148

    A novel method for single image super resolution without any training samples is presented in the paper. By sparse representation, the method attempts to recover at each pixel its best possible resolution increase based on the self similarity of the image patches across different scale and rotation transforms. The experiments indicate that the proposed method can produce robust and competitive results.

  • A Low-Complexity Sparse Channel Estimation Method for OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2211-2214

    In this letter, we propose a low-complexity sparse channel estimation method for orthogonal frequency division multiplexing (OFDM) systems. The proposed method uses a discrete Fourier transform (DFT)-based technique for channel estimation and a novel sorted noise space discrimination technique to estimate the channel length and tap positions. Simulation results demonstrate that the reduction in signal space improves the channel estimation performance.

  • Stochastic Sparse-Grid Collocation Algorithm for Steady-State Analysis of Nonlinear System with Process Variations

    Jun TAO  Xuan ZENG  Wei CAI  Yangfeng SU  Dian ZHOU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:6
      Page(s):
    1204-1214

    In this paper, a Stochastic Collocation Algorithm combined with Sparse Grid technique (SSCA) is proposed to deal with the periodic steady-state analysis for nonlinear systems with process variations. Compared to the existing approaches, SSCA has several considerable merits. Firstly, compared with the moment-matching parameterized model order reduction (PMOR) which equally treats the circuit response on process variables and frequency parameter by Taylor approximation, SSCA employs Homogeneous Chaos to capture the impact of process variations with exponential convergence rate and adopts Fourier series or Wavelet Bases to model the steady-state behavior in time domain. Secondly, contrary to Stochastic Galerkin Algorithm (SGA), which is efficient for stochastic linear system analysis, the complexity of SSCA is much smaller than that of SGA for nonlinear case. Thirdly, different from Efficient Collocation Method, the heuristic approach which may result in "Rank deficient problem" and "Runge phenomenon," Sparse Grid technique is developed to select the collocation points needed in SSCA in order to reduce the complexity while guaranteing the approximation accuracy. Furthermore, though SSCA is proposed for the stochastic nonlinear steady-state analysis, it can be applied to any other kind of nonlinear system simulation with process variations, such as transient analysis, etc.

  • Proportionate Normalized Least Mean Square Algorithms Based on Coefficient Difference

    Ligang LIU  Masahiro FUKUMOTO  Sachio SAIKI  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:5
      Page(s):
    972-975

    The proportionate normalized least mean square algorithm (PNLMS) greatly improves the convergence of the sparse impulse response. It exploits the shape of the impulse response to decide the proportionate step gain for each coefficient. This is not always suitable. Actually, the proportionate step gain should be determined according to the difference between the current estimate of the coefficient and its optimal value. Based on this idea, an approach is proposed to determine the proportionate step gain. The proposed approach can improve the convergence of proportionate adaptive algorithms after a fast initial period. It even behaves well for the non-sparse impulse response. Simulations verify the effectiveness of the proposed approach.

  • Generating Stable and Sparse Reluctance/Inductance Matrix under Insufficient Discretization

    Yuichi TANJI  Takayuki WATANABE  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    379-387

    This paper presents generating stable and sparse reluctance/inductance matrix from the inductance matrix which is extracted under insufficient discretization. To generate the sparse reluctance matrix with guaranteed stability, the original matrix has to be (strictly) diagonally dominant M matrix. Hence, the repeated inductance extractions with a smaller grid size are necessary in order to obtain the well-defined matrix. Alternatively, this paper provides some ideas for generating the sparse reluctance matrix, even if the extracted reluctance matrix is not diagonally dominant M matrix. These ease the extraction tasks greatly. Furthermore, the sparse inductance matrix is also generated by using double inverse methods. Since reluctance components are not still supported in SPICE-like simulators, generating the sparse inductance matrix is more useful than the sparse reluctance one.

  • A Variable Step-Size Proportionate NLMS Algorithm for Identification of Sparse Impulse Response

    Ligang LIU  Masahiro FUKUMOTO  Sachio SAIKI  Shiyong ZHANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:1
      Page(s):
    233-242

    Recently, proportionate adaptive algorithms have been proposed to speed up convergence in the identification of sparse impulse response. Although they can improve convergence for sparse impulse responses, the steady-state misalignment is limited by the constant step-size parameter. In this article, based on the principle of least perturbation, we first present a derivation of normalized version of proportionate algorithms. Then by taking the disturbance signal into account, we propose a variable step-size proportionate NLMS algorithm to combine the benefits of both variable step-size algorithms and proportionate algorithms. The proposed approach can achieve fast convergence with a large step size when the identification error is large, and then considerably decrease the steady-state misalignment with a small step size after the adaptive filter reaches a certain degree of convergence. Simulation results verify the effectiveness of the proposed approach.

  • Improved Channel Estimation Based on Sorted GAIC for OFDM Systems in Sparse Multipath Channels

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  Lan CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    192-194

    In this letter, we propose a novel sparse channel estimation method for orthogonal frequency division multiplexing (OFDM) systems. The proposed method uses a discrete Fourier transform (DFT)-based technique for channel estimation and a sorted generalized Akaike information criterion (GAIC) to estimate the channel length and tap positions. Simulation results demonstrate that an improved channel estimation performance is obtained due to the reduction of signal space.

  • A Reordering Model Using a Source-Side Parse-Tree for Statistical Machine Translation

    Kei HASHIMOTO  Hirofumi YAMAMOTO  Hideo OKUMA  Eiichiro SUMITA  Keiichi TOKUDA  

     
    PAPER-Machine Translation

      Vol:
    E92-D No:12
      Page(s):
    2386-2393

    This paper presents a reordering model using a source-side parse-tree for phrase-based statistical machine translation. The proposed model is an extension of IST-ITG (imposing source tree on inversion transduction grammar) constraints. In the proposed method, the target-side word order is obtained by rotating nodes of the source-side parse-tree. We modeled the node rotation, monotone or swap, using word alignments based on a training parallel corpus and source-side parse-trees. The model efficiently suppresses erroneous target word orderings, especially global orderings. Furthermore, the proposed method conducts a probabilistic evaluation of target word reorderings. In English-to-Japanese and English-to-Chinese translation experiments, the proposed method resulted in a 0.49-point improvement (29.31 to 29.80) and a 0.33-point improvement (18.60 to 18.93) in word BLEU-4 compared with IST-ITG constraints, respectively. This indicates the validity of the proposed reordering model.

  • A Modified Nested Sparse Grid Based Adaptive Stochastic Collocation Method for Statistical Static Timing Analysis

    Xu LUO  Fan YANG  Xuan ZENG  Jun TAO  Hengliang ZHU  Wei CAI  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E92-A No:12
      Page(s):
    3024-3034

    In this paper, we propose a Modified nested sparse grid based Adaptive Stochastic Collocation Method (MASCM) for block-based Statistical Static Timing Analysis (SSTA). The proposed MASCM employs an improved adaptive strategy derived from the existing Adaptive Stochastic Collocation Method (ASCM) to approximate the key operator MAX during timing analysis. In contrast to ASCM which uses non-nested sparse grid and tensor product quadratures to approximate the MAX operator for weakly and strongly nonlinear conditions respectively, MASCM proposes a modified nested sparse grid quadrature to approximate the MAX operator for both weakly and strongly nonlinear conditions. In the modified nested sparse grid quadrature, we firstly construct the second order quadrature points based on extended Gauss-Hermite quadrature and nested sparse grid technique, and then discard those quadrature points that do not contribute significantly to the computation accuracy to enhance the efficiency of the MAX approximation. Compared with the non-nested sparse grid quadrature, the proposed modified nested sparse grid quadrature not only employs much fewer collocation points, but also offers much higher accuracy. Compared with the tensor product quadrature, the modified nested sparse grid quadrature greatly reduced the computational cost, while still maintains sufficient accuracy for the MAX operator approximation. As a result, the proposed MASCM provides comparable accuracy while remarkably reduces the computational cost compared with ASCM. The numerical results show that with comparable accuracy MASCM has 50% reduction in run time compared with ASCM.

161-180hit(213hit)