The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] phase shift(92hit)

21-40hit(92hit)

  • A Calibrationless Si-CMOS 5-bit Baseband Phase Shifter Using a Fixed-Gain-Amplifier Matrix

    Tuan Thanh TA  Shoichi TANIFUJI  Suguru KAMEDA  Noriharu SUEMATSU  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:10
      Page(s):
    1322-1329

    In this paper, we propose a novel baseband (BB) phase shifter (PS) using a fixed-gain-amplifier (FGA) matrix. The proposed BB PS consists of 5 stages of a vector synthesis type FGA matrix with in-phase/quadrature-phase (I/Q) input/output interfaces. In order to achieve low gain variation between phase shift states, 3rd to 5th stages are designed to have a phase shift of +φi and -φi (i=3,4,5). To change between +φi and -φi phase shift states, two FGAs with DC bias in-phase/out-phase switches are used. The two FGAs have the same gain, therefore ideally no gain variation can be achieved. Using this configuration, phase shift error and gain variation caused by process mismatch and temperature variation can be reduced. Fabricated 5-bit BB PS has 3-dB bandwidth of 1.05GHz, root-mean-square (rms) phase errors lower than 2.2°, rms gain variations lower than 0.42dB. Power consumption of the PS core and output buffer are 4.9mW and 14.3mW, respectively. 1-dB compression output power is -12.5dBm. The fabricated PS shows that the total phase shift error and gain variation are within the required accuracy of a 5-bit PS with no requirement of calibration.

  • M-Shaped Dielectric Phase Shifter for Beam-Steerable Base-Station Antenna

    Kengo NISHIMOTO  Takeshi OSHIMA  Toru FUKASAWA  Hiroaki MIYASHITA  Yoshihiko KONISHI  Manabu KURIHARA  Yoshiyuki CHATANI  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:8
      Page(s):
    2095-2101

    We propose a simple and small phase shifter for a beam-steerable base-station antenna. This phase shifter has no metallic heterojunction, and the phase shift is controlled by moving an M-shaped dielectric plate between the strip conductor and the ground plane of a strip line. We derive a design equation from the condition that at the center frequency f0, the reflection coefficient = 0. In this phase shifter, the reflection coefficient becomes minimum at f0 regardless of the movement distance, r, of the dielectric plate, and the relationship between the phase shift and r is linear. These characteristics are verified by performing simulations and measurements. The size of the M-shaped dielectric phase shifter is 0.27λ00.12λ0, where λ0 is the free-space wavelength at f0. The insertion loss is smaller than about 0.2 dB within a fractional bandwidth of 10%, and the phase shift can vary from 0 to about 80 degrees.

  • Characterization of Silicon Mach-Zehnder Modulator in 20-Gbps NRZ-BPSK Transmission

    Kazuhiro GOI  Kenji ODA  Hiroyuki KUSAKA  Akira OKA  Yoshihiro TERADA  Kensuke OGAWA  Tsung-Yang LIOW  Xiaoguang TU  Guo-Qiang LO  Dim-Lee KWONG  

     
    PAPER

      Vol:
    E96-C No:7
      Page(s):
    974-980

    20-Gbps non return-to-zero (NRZ) – binary phase shift keying (BPSK) using the silicon Mach-Zehnder modulator is demonstrated and characterized. Measurement of a constellation diagram confirms successful modulation of 20-Gbps BPSK with the silicon modulator. Transmission performance is characterized in the measurement of bit-error-rate in accumulated dispersion range from -347 ps/nm to +334 ps/nm using SMF and a dispersion compensating fiber module. Optical signal-to-noise ratio required for bit-error-rate of 10-3 is 10.1 dB at back-to-back condition. It is 1.2-dB difference from simulated value. Obtained dispersion tolerance less than 2-dB power penalty for bit-error-rate of 10-3 is -220 ps/nm to +230 ps/nm. The symmetric dispersion tolerance indicates chirp-free modulation. Frequency chirp inherent in the modulation mechanism of the silicon MZM is also discussed with the simulation. The effect caused by the frequency chirp is limited to 3% shift in the chromatic dispersion range of 2 dB power penalty for BER 10-3. The effect inherent in the silicon modulation mechanism is confirmed to be very limited and not to cause any significant degradation in the transmission performance.

  • Performance Analysis and Optimization of Non-Data-Aided Carrier Frequency Estimator for APSK Signals

    Nan WU  Hua WANG  Jingming KUANG  Chaoxing YAN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2080-2086

    This paper investigates the non-data-aided (NDA) carrier frequency estimation of amplitude and phase shift keying (APSK) signals. The true Cramer-Rao bound (CRB) for NDA frequency estimation of APSK signals are derived and evaluated numerically. Characteristic and jitter variance of NDA Luise and Reggiannini (L&R) frequency estimator are analyzed. Verified by Monte Carlo simulations, the analytical results are shown to be accurate for medium-to-high signal-to-noise ratio (SNR) values. Using the proposed closed-form expression, parameters of the algorithm are optimized efficiently to minimize the jitter variance.

  • Band Pass Response on Left-Handed Ferrite Rectangular Waveguide

    Kensuke OKUBO  Makoto TSUTSUMI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1565-1571

    This paper investigates characteristics of periodic structure of ferrite and dielectric slabs in cutoff waveguide which include left-handed operation. Transmission line model and finite element simulation are used to get dispersion characteristics and scattering parameters. Band pass response of left-handed ferrite mode at negative permeability region are discussed with backward wave phenomenon. Theoretical results show that by choosing appropriate ratio of (1) ferrite width and dielectric width, and (2) ferrite length and dielectric length, band pass response with steep edge characteristics can be obtained by the LH ferrite mode, which are confirmed with experiments using single crystal of yttrium iron garnet ferrite. Good band pass and phase shift responses are observed in S band.

  • 90 Gbaud NRZ-DP-DQPSK Modulation with Full-ETDM Technique Using High-Speed Optical IQ Modulator

    Atsushi KANNO  Takahide SAKAMOTO  Akito CHIBA  Masaaki SUDO  Kaoru HIGUMA  Junichiro ICHIKAWA  Tetsuya KAWANISHI  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1179-1186

    We demonstrate high baud-rate DQPSK modulation with full-ETDM technique using a novel high-speed optical IQ modulator consisting of a ridge-type optical waveguide structure on a thin LiNbO3 substrate. Our fabrication technique achieves a drastic extension of the modulator's bandwidth and a reduction of half-wave voltage. Demonstration of 90-Gbaud NRZ-DP-DQPSK signal generation with the modulator successfully achieved a bit rate of 360-Gb/s under full-ETDM configuration.

  • BER Analysis and Verification of EBPSK System in AWGN Channel

    Man FENG  Lenan WU  Jiajia DING  Chenhao QI  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:3
      Page(s):
    806-809

    The extended binary phase shift keying (EBPSK) transmission system with ultra narrow bandwidth has excellent BER performance, which raises many doubts with the researchers. Therefore, on the premise of the existence of a special filter that can transform the modulated phase information into amplitude information, the theoretical BER formula of EBPSK system in Additive White Gaussian Noise (AWGN) channel has been deduced. This paper gives the theoretical values of the parameters in the above BER formula and discusses the effects of parameters on BER firstly. Then the paper shows that the special impacting filter satisfies the above assumption, therefore, in the frame of binary detection theory, the excellent performance of high-efficiency EBPSK system can be explained and the correction of the theoretical BER formula can be validated.

  • Single-Channel 1.28 Tbit/s-525 km DQPSK Transmission Using Ultrafast Time-Domain Optical Fourier Transformation and Nonlinear Optical Loop Mirror

    Pengyu GUAN  Hans Christian Hansen MULVAD  Yutaro TOMIYAMA  Toshiyuki HIRANO  Toshihiko HIROOKA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E94-B No:2
      Page(s):
    430-436

    We demonstrate a single-channel 1.28 Tbit/s-525 km transmission using OTDM of subpicosecond DQPSK signals. In order to cope with transmission impairments due to time-varying higher-order PMD, which is one of the major limiting factors in such a long-haul ultrahigh-speed transmission, we newly developed an ultrafast time-domain optical Fourier transformation technique in a round-trip configuration. By applying this technique to subpicosecond pulses, transmission impairments were greatly reduced, and BER performance below FEC limit was obtained with increased system margin.

  • Demonstration of 60-GHz Link Using a 1.6-Gb/s Mixed-Mode BPSK Demodulator

    Kwang-Chun CHOI  Minsu KO  Duho KIM  Woo-Young CHOI  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E93-C No:12
      Page(s):
    1704-1707

    A mixed-mode high-speed binary phase-shift keying (BPSK) demodulator for IEEE802.15.3c mm-wave wireless personal area network (WPAN) application is realized with 0.18-µm CMOS process. The proposed demodulator scheme does not require any analog-to-digital converters (ADC) and, consequently, can have advantages over the conventional schemes for high-data-rate demodulation. The demodulator core consumes 53.8 mW from 2.5-V power supply while the chip area is 380500 µm2. The fabricated chip is verified by 60-GHz wireless link tests with 1.6-Gb/s data.

  • Dual Evanescently Coupled Waveguide Photodiodes with High Reliability for over 40-Gbps Optical Communication Systems Open Access

    Kazuhiro SHIBA  Yasuyuki SUZUKI  Sawaki WATANABE  Tadayuki CHIKUMA  Takeshi TAKEUCHI  Kikuo MAKITA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E93-C No:12
      Page(s):
    1655-1661

    For over 40-Gbps optical communication systems, phase coded modulation formats, like differential phase shift keying (DPSK) and quadrature phase shift keying (QPSK), are very important for signal frequency efficiency and long-reach transmission. In such systems, differential receivers which regenerate phase signals are key components. Dual Photo Diodes (dual PDs) are key semiconductor devices which determine the receiver performance. Each PD of the dual PDs should realize high speed performance, high responsibility and high input power operation capability. Highly symmetrical characteristics between the two PDs should be also realized, thus the dual PDs are desired to be monolithically integrated to one chip. In this paper, we describe the design, fabrication, characteristics and reliability of monolithically integrated dual evanescently coupled waveguide photodiodes (EC-WG-PDs) for the purpose described above. The structure of the EC-WG-PDs offers the attractive advantages of high speed performance, high responsivity and high input power operation. Furthermore, their fabrication process is suitable for the integration of two PDs on one ship. First, the optimization was done for high products of 3-dB bandwidth and responsivity for 43-Gbps DPSK receivers. Excellent characteristics (50 GHz bandwidth with a responsivity of 0.95 A/W), and high reliability were demonstrated. The other type of optimization was done for ultra high speed operation up to 100-Gbps. The fabricated PDs exhibited the 3 dB-bandwidth of 80 GHz with a responsivity of 0.25 A/W. Furthermore, 43-Gbps RZ-DPSK receivers including the dual EC-WG-PDs based on the former optimization and differential transimpedance amplifiers (TIAs) newly developed for the purpose were also presented. Clear and symmetrical eye openings were observed for both ports. The OSNR characteristics exhibited 14.3 dB at a bit error rate of 10-3 that is able to be recovery with FEC. These performances are enough for practical use in 43-Gbps RZ-DPSK systems.

  • DPS Quantum Key Distribution System

    Kyo INOUE  

     
    INVITED PAPER

      Vol:
    E93-A No:5
      Page(s):
    897-902

    Differential-phase-shift (DPS) quantum key distribution (QKD) is one scheme of quantum key distribution whose security is based on the quantum nature of lightwave. This protocol features simplicity, a high key creation rate, and robustness against photon-number-splitting attacks. We describe DPS-QKD in this paper, including its setup and operation, eavesdropping against DPS-QKD, system performance, and modified systems to improve the system performance.

  • New Bits-to-Symbol Mapping for 32 APSK over Nonlinear Satellite Channels

    Jaeyoon LEE  Dongweon YOON  Sang Kyu PARK  

     
    LETTER

      Vol:
    E92-B No:11
      Page(s):
    3384-3388

    A 4+12+16 amplitude phase shift keying (APSK) modulation outperforms other 32-APSK modulations such as rectangular or cross 32-quadrature amplitude modulations (QAMs) which have a high peak to average power ratio that causes non-negligible AM/AM and AM/PM distortions when the signal is amplified by a high-power amplifier (HPA). This modulation scheme has therefore been recommended as a standard in the digital video broadcasting-satellite2 (DVB-S2) system. In this letter, we present a new bits-to-symbol mapping with a better bit error rate (BER) for a 4+12+16 APSK signal in a nonlinear satellite channel.

  • An L-Band 4-Bit RL/RC-Switched Active Phase Shifter Using Differential Switches

    Kenji NAKAMURA  Yasushi ITOH  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1170-1175

    An L-band 4-bit RL/RC-switched active phase shifter using differential switches is developed. It employs RL/RC circuits in the design of series feedback loops of the quadrature differential amplifier and achieves 90, 45, and 22.5of phase shift by switching on and off the RL/RC circuits alternatively. On the other hand, a 180phase shift is achieved with the use of a phase difference between the differential outputs. By cascading all four bits, an insertion gain of 16 to 23 dB, a phase error of less than 8.5, and an RMS phase error of 4.6have been achieved at 1 GHz.

  • Recent Advances in Ultra-High-Speed Waveguide Photodiodes for Optical Communication Systems Open Access

    Kikuo MAKITA  Kazuhiro SHIBA  Takeshi NAKATA  Emiko MIZUKI  Sawaki WATANABE  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    922-928

    This paper describes the recent advances in semiconductor photodiodes for use in ultra-high-speed optical systems. We developed two types of waveguide photodiodes (WG-PD) -- an evanescently coupled waveguide photodiode (EC-WG-PD) and a separated-absorption-and-multiplication waveguide avalanche photodiode (WG-APD). The EC-WG-PD is very robust under high optical input operation because of its distribution of photo current density along the light propagation. The EC-WG-PD simultaneously exhibited a high external quantum efficiency of 70% for both 1310 and 1550 nm, and a wide bandwidth of more than 40 GHz. The WG-APD, on the other hand, has a wide bandwidth of 36.5 GHz and a gain-bandwidth product of 170 GHz as a result of its small waveguide mesa structure and a thin multiplication layer. Record high receiver sensitivity of -19.6 dBm at 40 Gbps was achieved. Additionally, a monolithically integrated dual EC-WG-PD for differential phase shift-keying (DPSK) systems was developed. Each PD has equivalent characteristics with 3-dB-down bandwidth of more than 40 GHz and external quantum efficiency of 70% at 1550 nm.

  • Wavelength Conversion Characteristics of SOA-MZI Based All-Optical NRZ-OOK/RZ-BPSK Modulation Format Converter

    Suresh M. NISSANKA  Ken MISHINA  Akihiro MARUTA  Shunsuke MITANI  Kazuyuki ISHIDA  Katsuhiro SHIMIZU  Tatsuo HATTA  Ken-ichi KITAYAMA  

     
    PAPER

      Vol:
    E91-B No:7
      Page(s):
    2160-2164

    All-optical wavelength conversion and modulation format conversion will be needed in the next generation high-speed optical communication networks. We have proposed and successfully demonstrated the error free operation of all-optical modulation format conversion from NRZ-OOK to RZ-BPSK using SOA based MZI wavelength converter. In this paper, we experimentally investigate the wavelength conversion characteristics of the proposed NRZ-OOK/RZ-BPSK modulation format converter. The results show that error free modulation format conversion is possible over the entire C band.

  • Numerical Study of APSK Format for Long-Haul Transmission and Its Performance Improvement by Zero-Nulling Method

    Hidenori TAGA  Jyun-Yi WU  Wei-Tong SHIH  Seng-Sheng SHU  

     
    PAPER

      Vol:
    E91-B No:7
      Page(s):
    2165-2168

    Transmission performance of amplitude and phase shift keying (APSK) format is studied theoretically. The extinction ratio of the amplitude shift keying (ASK) signal of the APSK format causes a trade-off of the performance between the ASK and the phase shift keying (PSK) signal of the APSK format. Then, zero-nulling method is proposed to improve the performance of the APSK format, and its effectiveness is confirmed by the numerical simulation.

  • A Variable Phase Shifter Using a Movable Waffle Iron Metal Plate and Its Applications to Phased Array Antennas Open Access

    Hideki KIRINO  Koichi OGAWA  Takeshi OHNO  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1773-1782

    A variable phase shifter using a movable waffle iron metal plate comprised of iron rods a quarter-wavelength in length is proposed. A study of the waffle iron structure was carried out and the design method for creating a structure that would achieve large phase changes, small loss, and good isolation between adjacent phase shifters is discussed. Experiments on 1-port and 2-port phase shifters operating in the 5 GHz band show that they not only have low loss characteristics but also wide phase changes. Furthermore, the application to phased array antennas using the proposed phase shifter and its principle are demonstrated.

  • Slow-Wave Effect of Electronically-Controlled Composite Right/Left-Handed (CRLH) Transmission Line

    Sungjoon LIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:5
      Page(s):
    1665-1668

    A dispersion diagram is useful in interpreting the characteristics of a periodic structure. In particular, the fast-wave region, where the wave is radiating, and the slow-wave region, where the wave is guided, can be determined from the dispersion diagram. An electronically-controlled composite right/left-handed (CRLH) transmission line (TL) was previously proposed and utilized as a leaky-wave (LW) antenna operating in the fast-wave region. However, since a guided-wave application operates in the slow-wave region, it is meaningful to study slow-wave effects of the proposed TL. In this paper, the dispersion diagram is used to investigate the slow-wave factor (SWF), which is necessary to understand the fast/slow-wave operations. Furthermore, the frequency characteristics are measured to find the cut-off frequencies in the LH and RH regions. Based on experimental results, it is observed at a fixed frequency, 2.6-GHz, that the phase of a proposed 6-cell structure can be changed by up to 280 in the LH slow-wave region.

  • A Bisection Method-Based Controlling Scheme for Phased Array Antenna with Slow Switching Speed-Phase Shifters

    Quoc Tuan TRAN  Shinsuke HARA  Atsushi HONDA  Yuuta NAKAYA  Ichirou IDA  Yasuyuki OISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1557-1567

    Phased array antennas are attractive in terms of low cost and power consumption. This paper proposes a controlling scheme based on a bisection method for phased array antennas employing phase shifters with slow switching speed, which is typical for Micro Electro Mechanical Systems (MEMS) switches. Computer simulation results, assuming the IEEE 802.11a Wireless Local Area Network (WLAN) standard, show that the proposed scheme has good gain enhancement capability in multipath fading channels.

  • Performance of Coded π/2 NS-8QAM Modulation

    Changqing LIU  Yu ZHANG  Jian SONG  Changyong PAN  Zhixing YANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E91-B No:5
      Page(s):
    1612-1614

    Spectrum and Bit Error Rate (BER) performance of a coded π/2 phase shift Non-Square (NS) 8 Quadrature Amplitude Modulation (QAM) system are studied in this letter. The modulation process of this scheme removes all 180 phase shift between adjacent constellation points and contains inherent memory which can be treated as a type of inner coding in coded system. Simulation results show that this modulation scheme has much lower spectrum regrowth and better BER performance when passing through nonlinear channel compared with conventional mode.

21-40hit(92hit)