The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] plasma display(22hit)

1-20hit(22hit)

  • Address Power Reduction Method for High-Resolution Plasma Display Panels Using Address Data Smoothing Based on a Visual Masking Effect

    Masahiko SEKI  Masato FUJII  Tomokazu SHIGA  

     
    PAPER

      Vol:
    E99-C No:11
      Page(s):
    1277-1282

    This paper proposes an address power reduction method for plasma display panels (PDPs) using subfield data smoothing based on a visual masking effect. High-resolution, high-frame-rate PDPs have large address power loss caused by parasitic capacitance. Although the address power is reduced by smoothing the subfield data, noise is generated. The proposed method reduces the address power while maintaining the image quality by choosing the smoothing area of the address data based on the visual masking effect. The results of subjective assessment for the images based on smoothed address data indicate that image quality is maintained.

  • A Cost-Effective Energy-Recovering Sustain Driving Circuit for ac Plasma Display Panels

    Jae Kwang LIM  Heung-Sik TAE  Byungcho CHOI  Seok Gi KIM  

     
    PAPER-Electronic Displays

      Vol:
    E95-C No:2
      Page(s):
    303-308

    A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.

  • Study on Address Discharge Characteristics by Changing Ramp-Down Voltage in AC PDPs

    Joon-Yub KIM  Yeon Tae JEONG  Byung-Gwon CHO  

     
    BRIEF PAPER-Electronic Displays

      Vol:
    E94-C No:9
      Page(s):
    1483-1485

    The address discharge characteristics formed when an address pulse is applied in AC plasma display panels are investigated by changing the ramp-down voltage during the reset period. The address discharge time lag can be reduced when the difference between the ramp-down voltage and the scan-low voltage is set at a high value during the ramp-down period because the loss of the wall charges accumulated between the scan (Y) and address (A) electrodes during the reset period is minimized. In addition, the voltage applied to the X electrode during the ramp-down period can prevent the voltage margin from reduction even though applying high voltage difference on the Y electrodes.

  • New Cost-Effective Driving Circuit for Plasma-TV

    Jae Kwang LIM  Heung-Sik TAE  Dong-Ho LEE  Kazuhiro ITO  Jung Pil PARK  

     
    PAPER-Electronic Displays

      Vol:
    E93-C No:2
      Page(s):
    200-204

    Unlike the conventional plasma-TVs using the driving circuit with two polarities during the reset and address periods, the cost-effective driving circuit using only the positive voltage level during the reset and address periods is proposed and implemented in the 42-in. plasma-TV.

  • Driving Techniques for Long Sustain Gap AC PDP Using LaB6 Cathode

    Tomokazu SHIGA  Masao ONO  Shinichi HARA  Satoshi KUSAKARI  Yoshifumi AMANO  

     
    PAPER

      Vol:
    E92-C No:11
      Page(s):
    1353-1357

    A replacement of an expensive MgO protective layer with relatively inexpensive Lanthanum Hexa Boride (LaB6) has already been proposed. Since LaB6 is not transparent, unlike MgO, the LaB6 panel employs a long sustain gap structure. Since the sustain gap is 2.6 times larger than the distance between sustain and address electrodes, different driving methods from those of the conventional PDPs have to be adopted. For the driving technique of the sustain period, an application of delayed auxiliary pulses on A electrode and the overlap sustain pulse drive are proposed. Luminance degradation with higher sustain frequency driving can be compensated by use of a 2step sustain pulse driving. Low reset luminance and low address voltage are achieved with a square-ramp technique for the reset period. TV operation is successfully realized on AC PDP which incorporated the LaB6 cathodes.

  • Excitation Phenomena of Plasma Display Panel

    Teruo KURAI  

     
    PAPER-Electronic Displays

      Vol:
    E91-C No:7
      Page(s):
    1158-1166

    We formulated the excitation rate of VUV and emitted visible light from rare gas on PDP by using the Boltzmann equation with electron-atom collision integral term and obtained the excitation rate as the function of Temperature and Mass. This form of excitation rate was firstly derived in PDP area. In addition we showed the Pressure dependence of intensity ratio of Ne/VUV as the application of our excitation rate formulae.

  • Image Adaptive Incremental Subfield Coding for Plasma Display Panels

    Myung Jin PARK  Hyoun Soo PARK  Young Hwan KIM  

     
    LETTER

      Vol:
    E90-C No:11
      Page(s):
    2100-2104

    In this letter, we propose a new approach to incremental coding of the subfield codes for plasma display panels (PDPs). The proposed approach suppresses the halftone noise of the PDPs, while completely eliminating false contour noise, as do existing incremental subfield codes, by selecting an optimal incremental subfield code adaptively for a given input image. The proposed method maps the problem of selecting the optimal incremental subfield code onto a special-case shortest path problem. Results of experiment using 109 sample images illustrated that the proposed method improved the average peak signal-to-noise ratio by 4.4-6.2 dB in halftone noise compared with existing incremental subfield coding methods.

  • High-Speed Drive Waveforms of PDPs with Wall-Charge Elimination, Write-Address Scheme

    Takateru SAWADA  Tomokazu SHIGA  Shigeo MIKOSHIBA  

     
    INVITED PAPER

      Vol:
    E89-C No:10
      Page(s):
    1395-1399

    A high-speed drive technique is introduced in which addressing is done by eliminating, instead of accumulating, the wall charges. In the proposed scheme, wall charges are accumulated in all the cells in advance, and then the address discharges take place in selected cells to eliminate the wall charges. Sustain discharges are generated in these cells. In order to realize the proposed address scheme, re-designing of a setup waveforms was necessary. The data pulse of 1.33 µs wide and 84 V was realized in a Ne+10%Xe PDP. A contrast of 3,600:1 was obtained by providing one setup period in a TV field.

  • Image-Dependent Code Optimization to Improve Motion Picture Quality of Plasma Displays

    Jong Suk LEE  Bong Seok KANG  Young Hwan KIM  

     
    LETTER

      Vol:
    E89-C No:10
      Page(s):
    1400-1405

    This letter proposes an efficient method to find the optimum subfield code, which minimizes the visual artifacts on the motion pictures of the plasma display panel (PDP). Existing codes were constructed to reduce dynamic false contour (DFC) only, and they are fixed codes used for every image. In contrast, the proposed method aims to minimize the total artifacts by DFC and halftone noise (HN), and it finds the best code for a given image, dynamically. First, this letter presents the novel models to estimate the effect of DFC and HN for given codewords and a given image. Then, it presents an efficient method that finds the optimum code for a given image using the well-known shortest-path algorithm. Experimental results, using 459 HDTV images, illustrated that the proposed approach improved the average PSNR by 0.713 dB and 7.004 dB in DFC and HN, respectively, when compared with Gravity Centre Code [1].

  • Dual-Slope Ramp Reset Waveform to Improve Dark Room Contrast Ratio in AC PDPs

    Heung-Sik TAE  Jae-Kwnag LIM  Byung-Gwon CHO  

     
    LETTER-Electronic Displays

      Vol:
    E88-C No:12
      Page(s):
    2400-2404

    A new dual-slope ramp (DSR) reset waveform is proposed to improve the dark room contrast ratio in AC-PDPs. The proposed reset waveform has two different voltage slopes during a ramp-up period. The first voltage slope lower than the conventional ramp voltage slope plays a role in producing the priming particles under the low background luminance, which is considered to be a kind of pre-reset discharge. On the other hand, the second voltage slope higher than the conventional ramp voltage slope produces a stable reset discharge due to the presence of the priming particles, but gives rise to a slight increase in the background luminance. Thus, a bias voltage is also applied during a part of the second voltage-slope period to adjust the background luminance and address discharge characteristics. As a result, the proposed dual-slope reset waveform can lower the background luminance without causing the discharge instability, thereby improving the high dark room contrast ratio of an AC-PDP without reducing the address voltage margin.

  • Bipolar Scan Waveform for Fast Address in AC Plasma Display Panel

    Ki-Duck CHO  Heung-Sik TAE  Sung-Il CHIEN  

     
    LETTER-Electronic Displays

      Vol:
    E87-C No:1
      Page(s):
    116-119

    A new bipolar scan waveform is proposed to increase the light emission duty factor by achieving the fast address in AC plasma display panel (AC-PDP). The new bipolar scan waveform consists of two-step scan pulse, which can separate the address discharge mode into two different discharge modes: a space charge generation mode and a wall charge accumulation mode. By adopting the new bipolar scan waveform, the light emission duty factor is increased considerably under the single scan ADS driving scheme due to the reduction of address time per single subfield.

  • A Study of Effective Power-Reduction Methods for PDP Address-Driver ICs by Applying a Power-Dispersion Scheme

    Yuji SANO  Akihiro TAKAGI  Yasuhiro SUGIMOTO  

     
    PAPER-Electronic Displays

      Vol:
    E86-C No:8
      Page(s):
    1774-1781

    It is very difficult to simultaneously achieve power and cost reductions in address-driver circuits of a plasma-display panel (PDP) unit in which an energy-recovery scheme utilizing the resonance of a series-connected inductor and electrode parasitic capacitors is used. This is because an increase in parasitic capacitance and high-speed circuit operation become necessary as the display panel becomes larger in size and higher in resolution. In particular, low-power operation of address-driver ICs is key to avoiding the installation of heat sinks on the ICs. We propose herein new power-dispersion methods that can greatly reduce the power dissipation of address-driver ICs even when large parasitic capacitance is driven at high speed. The proposed methods enable a reduction in the power dissipation of address-driver ICs without deteriorating the operational speed by dispersing their powers into external resistors, and by supplying power to address-driver ICs in two voltage steps during both rising and falling time intervals when the address changes. Our results indicate that the power dissipation of address-driver ICs and the total cost of the address drive unit of a plasma-display panel can be reduced to 29% and 53%, respectively, compared with those of the ICs and the unit that are driven by the conventional address-driving method.

  • New Multi-Luminance-Level Subfield Method for Reducing Low Gray-Level Contour in AC Plasma Display Panel

    Ki-Duck CHO  Heung-Sik TAE  Sung-Il CHIEN  

     
    LETTER-Electronic Displays

      Vol:
    E86-C No:4
      Page(s):
    682-685

    A new multi-luminance-level subfield method is proposed to reduce the low gray-level contour of an alternate current plasma display panel (AC-PDP). The minimum or maximum luminance level per sustain-cycle can be altered by simultaneously applying the proper auxiliary short pulses. As a result, the multi-luminance levels per one or two sustain pulse pairs can be expressed by properly adjusting the auxiliary short pulses for the one or two sustain-cycle subfields, thereby suppressing a low gray-level contour of AC-PDP.

  • An Optimum Selection of Subfield Pattern for Plasma Displays Based on Genetic Algorithm

    Seung-Ho PARK  Choon-Woo KIM  

     
    PAPER-Plasma Displays

      Vol:
    E84-C No:11
      Page(s):
    1659-1666

    A plasma display panel (PDP) represents gray levels by the pulse number modulation technique that results in undesirable dynamic false contours on moving images. Among the various techniques proposed for the reduction of dynamic false contours, the optimization of the subfield pattern can be most easily implemented without the need for any additional dedicated hardware or software. In this paper, a systematic method for selecting the optimum subfield pattern is presented. In the proposed method, a subfield pattern that minimizes the quantitative measure of the dynamic false contour on the predefined test image is selected as the optimum pattern. The selection is made by repetitive calculations based on a genetic algorithm. Quantitative measure of the dynamic false contour calculated by simulation on the test image serves as a criterion for minimization by the genetic algorithm. In order to utilize the genetic algorithm, a structure of a string is proposed to satisfy the requirements for the subfield pattern. Also, three genetic operators for optimization, reproduction, crossover, and mutation, are specially designed for the selection of the optimum subfield pattern.

  • A Study on a Priming Effect in AC-PDPs and Its Application to Low Voltage and High Speed Addressing

    Makoto ISHII  Tomokazu SHIGA  Kiyoshi IGARASHI  Shigeo MIKOSHIBA  

     
    PAPER-Plasma Displays

      Vol:
    E84-C No:11
      Page(s):
    1673-1678

    A priming effect is studied for a three-electrode, surface-discharge AC-PDP, which has stripe barrier ribs of 0.22 mm pitch. It was found that by keeping the interval between the reset and address pulses within 24 µs, the data pulse voltage can be reduced while the data pulse width can be narrowed due to the priming effect. By adopting the primed addressing technique to the PDP, the data pulse voltage was reduced to 20 V when the data and scan pulse widths were 1 µs. Alternatively, the data pulse width could be narrowed to 0.33 µs when the data pulse voltage was 56 V. 69% of the TV field time could be assigned for the display periods with 12 sub-fields, assuring high luminance display.

  • Energy Loss Mechanisms in AC-PDP Discharges

    Markus H. KLEIN  Rob J. M. M. SNIJKERS  Gerjan J. M. HAGELAAR  

     
    PAPER

      Vol:
    E83-C No:10
      Page(s):
    1602-1607

    Low luminous efficacy is one of the major drawbacks of PDPs, with the discharge being the predominant limiting factor. Numeric simulations granting deeper insight in the core processes of the discharge are presented and the key parameters influencing the plasma efficiency are examined.

  • Metal-Glazed Thick-Film Resistors Fired at Low Temperature on Glass Substrate

    Ikuo KANEKO  Sadayoshi TAGUCHI  Toshiyuki KASHIWAGI  

     
    PAPER-Electronic Components

      Vol:
    E83-C No:10
      Page(s):
    1669-1676

    Conventional metal-glazed thick-film resistors are applied to Hybrid Integrated Circuits, chip resistors and others. These resistors are usually fired at a high temperature of around 850C on ceramic substrates. Recently, however, attempts have been made to fire some metal-glazed thick-film resistors at lower temperatures on glass substrates for application as the control resistors for the discharge current of dc Plasma Display Panels (PDPs). We have attempted to realize such low-firing-temperature thick-film resistors using Pb2Ru2O7-x as conductive particles, two kinds of lead-borosilicate glasses as binders, and three kinds of metallic oxide as additives, which are fired at 580C on a soda lime glass substrate. The electrical properties of the specimens, 16 kinds in all, fabricated from various combinations of binder glasses, additives and electrode materials have been measured. Effective dimensions of the specimen resistor are 0.25 0.25 mm2 or less in surface area, since extremely small size is required by PDPs. The effect of the combination of additive and binder glass on the conductive particles of Pb2Ru2O7-x has been examined in detail, together with the affinity for electrical conjunction between resistor and electrode.

  • Simulation of Motion Picture Disturbance for AC-PDP Modeling Virtual Pixel on Retina

    Isao KAWAHARA  Koichi WANI  

     
    PAPER

      Vol:
    E81-C No:11
      Page(s):
    1733-1739

    The performance of AC plasma displays has been improved in the area of brightness and contrast, while significant advances in image quality are still required for the HDTV quality. In particular, in full color motion video, motion artifacts and lack of color depth are still visible in some situations. These motional artifacts are mitigated as the number of the subfields increases, usually at the cost of losing brightness or increasing driving circuitry. Therefore, it is still one of our great concerns to find out the optimized subfield configuration through weighting and order of each subfield, and their coding of combination. For evaluation and improvement of motion picture disturbance, we have established a procedure that fully simulates the image quality of displays which utilize the subfield driving scheme. The simulation features virtually located sensor pixels on human retina, eye-tracking sensor windows, and a built-in spatial low pass filter. The model pixelizes the observers retina like a sensor chip in a CCD camera. An eye-tracking sensor window is assigned to every light emission from the display, to calculate the emissions from one to four adjoining pixels along the trajectory of motion. Through this model, a scene from original motion picture without disturbance is transformed into the still image with simulated disturbance. The integration of the light emission from adjoining pixels through the window, also functions as a built-in spatial low pass filter to secure the robust output, considering the MTF of the human eye. Both simulation and actual 42-in-diagonal PDPs showed close results under various conditions, showing that the model is simple, but reasonable. Through the simulation, general properties of the subfield driving scheme for gray scale have been elucidated. For example, a PWM-like coding offers a better performance than an MSB-split coding in many cases. The simulation also exemplifies the motion picture disturbance as a non-linear filter process caused by the dislocation of bit weightings, suggesting that tradeoffs between disturbance and resolution in motion area are mandatory.

  • An Improvement of PDP Picture Quality by Using a Modified-Binary-Coded Scheme with a 3D Scattering of Motional Artifacts

    Takahiro YAMAGUCHI  Shigeo MIKOSHIBA  

     
    INVITED PAPER

      Vol:
    E80-C No:8
      Page(s):
    1079-1085

    When moving images are displayed on color PDPs, motional artifacts such as disturbances of gray scales and colors are often observed. Reduction of the disturbances is essential in achieving PDPs with acceptable picture quality for TV use. The moving picture quality has been improved by using a modified-binary-coded light-emission-period scheme and a 3dimensional (2D in space and 1D in time) scattering technique. In the 10-sub-field modified-binary-code scheme for 256 gray level expression, sub-field B (of period equivalent to 64) and C (128) of conventional 8-sub-field binary-coded scheme are added and then re-distributed into four sub-fields D (48). The modifiedbinary-coded scheme therefore has the light-emitting-period ratio 1:2:4:8:16:32:48:48:48:48. The maximum period, 128 of the conventional, is reduced to 48. By using the modified-binary-coded scheme, the motional artifacts are reduced significantly, but still perceptible because they appear in forms of continuous lines. In order to make the disturbance less conspicuous, a 3D scattering technique is introduced. The technique has been made possible because of the redundancies of the modified-binary-coded scheme: namely, (1) the position of sub-field-block A (63) can be placed at one of the five positions among four sub-fields D (48), (2) there are various choices when newly assigning one of the four sub-fields D, (3) one can arbitrarily choose whether or not to assign a new sub-field D between the gray levels 48-63, 96-111, 144-160, and 192-207. By randomly selecting one of these emission patterns, the disturbances change their forms from continuous lines to scattered dots. The randomization can be performed at each horizontal line of the display, at each vertical line, at each pixel, of at each TV field. An appreciable improvement of moving picture quality has been realized without influencing the still image.

  • Application of Alkaline-Earth-Metal and Rare-Earth-Element Compound-Oxide Formation Solutions to a Protective Layer for AC-type Plasma Display Panel

    Ichiro KOIWA  Takao KANEHARA  Juro MITA  

     
    PAPER-Electronic Displays

      Vol:
    E79-C No:11
      Page(s):
    1608-1617

    We studied the application of precursor solutions that can be fired into oxides to form a protective layer for AC-type Plasma Display Panel (AC-PDP). Our study of alkoxide and metallic soap as MgO precursors revealed that the crystallinity of MgO films depends on the starting substance. Since the electric discharge characteristics of a panel and the lamination effect of the protective layer depend on precursors, it was confirmed that binders having higher crystallinity provide better characteristics. Our study revealed that a compound-oxide film has high crystallinity. The application of a Ba0.6Sr0.4Gd2O4 formation solution to a binder and the application of a Sr0.6Mg0.4Gd2O4 formation solution to a protective layer both are seemed promising We also found that a double-layer film, made by forming a protective layer of fine MgO powder and a Ba0.6Sr0.4Gd2O4 binder, on top of a protective layer made of fine MgO powder and a MgO binder, provides a luminous efficiency 5.3 times higher than that of sputtered MgO film which is one of candidates for the large panel, and the conventional electron beam evaporation is not suitable for the large panel. We further found that a triple-layer protective film made by forming a thin film of Sr0.6Mg0.4Gd2O4 provides low voltages of 1 V in firing voltage (Vf) and 35 V in sustaining voltage (Vs) compared to the double-layer film and provides a luminous efficiency 5.5 times higher than that of sputtered MgO film. A life test revealed the triple-layer film in particular providing a useful life of more than 10,000 hours. From these findings, we concluded that the compound-oxides which is composed of alkaline-earth-metal and rare-earth-element could be applied effectively to a protective layer for AC-PDP.

1-20hit(22hit)