The search functionality is under construction.

Keyword Search Result

[Keyword] recognition(860hit)

1-20hit(860hit)

  • 2D Human Skeleton Action Recognition Based on Depth Estimation Open Access

    Lei WANG  Shanmin YANG  Jianwei ZHANG  Song GU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/02/27
      Vol:
    E107-D No:7
      Page(s):
    869-877

    Human action recognition (HAR) exhibits limited accuracy in video surveillance due to the 2D information captured with monocular cameras. To address the problem, a depth estimation-based human skeleton action recognition method (SARDE) is proposed in this study, with the aim of transforming 2D human action data into 3D format to dig hidden action clues in the 2D data. SARDE comprises two tasks, i.e., human skeleton action recognition and monocular depth estimation. The two tasks are integrated in a multi-task manner in end-to-end training to comprehensively utilize the correlation between action recognition and depth estimation by sharing parameters to learn the depth features effectively for human action recognition. In this study, graph-structured networks with inception blocks and skip connections are investigated for depth estimation. The experimental results verify the effectiveness and superiority of the proposed method in skeleton action recognition that the method reaches state-of-the-art on the datasets.

  • Conflict Management Method Based on a New Belief Divergence in Evidence Theory Open Access

    Zhu YIN  Xiaojian MA  Hang WANG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2024/03/01
      Vol:
    E107-D No:7
      Page(s):
    857-868

    Highly conflicting evidence that may lead to the counter-intuitive results is one of the challenges for information fusion in Dempster-Shafer evidence theory. To deal with this issue, evidence conflict is investigated based on belief divergence measuring the discrepancy between evidence. In this paper, the pignistic probability transform belief χ2 divergence, named as BBχ2 divergence, is proposed. By introducing the pignistic probability transform, the proposed BBχ2 divergence can accurately quantify the difference between evidence with the consideration of multi-element sets. Compared with a few belief divergences, the novel divergence has more precision. Based on this advantageous divergence, a new multi-source information fusion method is devised. The proposed method considers both credibility weights and information volume weights to determine the overall weight of each evidence. Eventually, the proposed method is applied in target recognition and fault diagnosis, in which comparative analysis indicates that the proposed method can realize the highest accuracy for managing evidence conflict.

  • Reservoir-Based 1D Convolution: Low-Training-Cost AI Open Access

    Yuichiro TANAKA  Hakaru TAMUKOH  

     
    LETTER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    941-944

    In this study, we introduce a reservoir-based one-dimensional (1D) convolutional neural network that processes time-series data at a low computational cost, and investigate its performance and training time. Experimental results show that the proposed network consumes lower training computational costs and that it outperforms the conventional reservoir computing in a sound-classification task.

  • Analysis of Blood Cell Image Recognition Methods Based on Improved CNN and Vision Transformer Open Access

    Pingping WANG  Xinyi ZHANG  Yuyan ZHAO  Yueti LI  Kaisheng XU  Shuaiyin ZHAO  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/15
      Vol:
    E107-A No:6
      Page(s):
    899-908

    Leukemia is a common and highly dangerous blood disease that requires early detection and treatment. Currently, the diagnosis of leukemia types mainly relies on the pathologist’s morphological examination of blood cell images, which is a tedious and time-consuming process, and the diagnosis results are highly subjective and prone to misdiagnosis and missed diagnosis. This research suggests a blood cell image recognition technique based on an enhanced Vision Transformer to address these problems. Firstly, this paper incorporate convolutions with token embedding to replace the positional encoding which represent coarse spatial information. Then based on the Transformer’s self-attention mechanism, this paper proposes a sparse attention module that can select identifying regions in the image, further enhancing the model’s fine-grained feature expression capability. Finally, this paper uses a contrastive loss function to further increase the intra-class consistency and inter-class difference of classification features. According to experimental results, The model in this study has an identification accuracy of 92.49% on the Munich single-cell morphological dataset, which is an improvement of 1.41% over the baseline. And comparing with sota Swin transformer, this method still get greater performance. So our method has the potential to provide reference for clinical diagnosis by physicians.

  • Automated Labeling of Entities in CVE Vulnerability Descriptions with Natural Language Processing Open Access

    Kensuke SUMOTO  Kenta KANAKOGI  Hironori WASHIZAKI  Naohiko TSUDA  Nobukazu YOSHIOKA  Yoshiaki FUKAZAWA  Hideyuki KANUKA  

     
    PAPER

      Pubricized:
    2024/02/09
      Vol:
    E107-D No:5
      Page(s):
    674-682

    Security-related issues have become more significant due to the proliferation of IT. Collating security-related information in a database improves security. For example, Common Vulnerabilities and Exposures (CVE) is a security knowledge repository containing descriptions of vulnerabilities about software or source code. Although the descriptions include various entities, there is not a uniform entity structure, making security analysis difficult using individual entities. Developing a consistent entity structure will enhance the security field. Herein we propose a method to automatically label select entities from CVE descriptions by applying the Named Entity Recognition (NER) technique. We manually labeled 3287 CVE descriptions and conducted experiments using a machine learning model called BERT to compare the proposed method to labeling with regular expressions. Machine learning using the proposed method significantly improves the labeling accuracy. It has an f1 score of about 0.93, precision of about 0.91, and recall of about 0.95, demonstrating that our method has potential to automatically label select entities from CVE descriptions.

  • Mining User Activity Patterns from Time-Series Data Obtained from UWB Sensors in Indoor Environments Open Access

    Muhammad FAWAD RAHIM  Tessai HAYAMA  

     
    PAPER

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    459-467

    In recent years, location-based technologies for ubiquitous environments have aimed to realize services tailored to each purpose based on information about an individual's current location. To establish such advanced location-based services, an estimation technology that can accurately recognize and predict the movements of people and objects is necessary. Although global positioning system (GPS) has already been used as a standard for outdoor positioning technology and many services have been realized, several techniques using conventional wireless sensors such as Wi-Fi, RFID, and Bluetooth have been considered for indoor positioning technology. However, conventional wireless indoor positioning is prone to the effects of noise, and the large range of estimated indoor locations makes it difficult to identify human activities precisely. We propose a method to mine user activity patterns from time-series data of user's locationss in an indoor environment using ultra-wideband (UWB) sensors. An UWB sensor is useful for indoor positioning due to its high noise immunity and measurement accuracy, however, to our knowledge, estimation and prediction of human indoor activities using UWB sensors have not yet been addressed. The proposed method consists of three steps: 1) obtaining time-series data of the user's location using a UWB sensor attached to the user, and then estimating the areas where the user has stayed; 2) associating each area of the user's stay with a nearby landmark of activity and assigning indoor activities; and 3) mining the user's activity patterns based on the user's indoor activities and their transitions. We conducted experiments to evaluate the proposed method by investigating the accuracy of estimating the user's area of stay using a UWB sensor and observing the results of activity pattern mining applied to actual laboratory members over 30-days. The results showed that the proposed method is superior to a comparison method, Time-based clustering algorithm, in estimating the stay areas precisely, and that it is possible to reveal the user's activity patterns appropriately in the actual environment.

  • MCGCN: Multi-Correlation Graph Convolutional Network for Pedestrian Attribute Recognition

    Yang YU  Longlong LIU  Ye ZHU  Shixin CEN  Yang LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/11/29
      Vol:
    E107-D No:3
      Page(s):
    400-410

    Pedestrian attribute recognition (PAR) aims to recognize a series of a person's semantic attributes, e.g., age, gender, which plays an important role in video surveillance. This paper proposes a multi-correlation graph convolutional network named MCGCN for PAR, which includes a semantic graph, visual graph, and synthesis graph. We construct a semantic graph by using attribute features with semantic constraints. A graph convolution is employed, based on prior knowledge of the dataset, to learn the semantic correlation. 2D features are projected onto visual graph nodes and each node corresponds to the feature region of each attribute group. Graph convolution is then utilized to learn regional correlation. The visual graph nodes are connected to the semantic graph nodes to form a synthesis graph. In the synthesis graph, regional and semantic correlation are embedded into each other through inter-graph edges, to guide each other's learning and to update the visual and semantic graph, thereby constructing semantic and regional correlation. On this basis, we use a better loss weighting strategy, the suit_polyloss, to address the imbalance of pedestrian attribute datasets. Experiments on three benchmark datasets show that the proposed approach achieves superior recognition performance compared to existing technologies, and achieves state-of-the-art performance.

  • Simultaneous Adaptation of Acoustic and Language Models for Emotional Speech Recognition Using Tweet Data

    Tetsuo KOSAKA  Kazuya SAEKI  Yoshitaka AIZAWA  Masaharu KATO  Takashi NOSE  

     
    PAPER

      Pubricized:
    2023/12/05
      Vol:
    E107-D No:3
      Page(s):
    363-373

    Emotional speech recognition is generally considered more difficult than non-emotional speech recognition. The acoustic characteristics of emotional speech differ from those of non-emotional speech. Additionally, acoustic characteristics vary significantly depending on the type and intensity of emotions. Regarding linguistic features, emotional and colloquial expressions are also observed in their utterances. To solve these problems, we aim to improve recognition performance by adapting acoustic and language models to emotional speech. We used Japanese Twitter-based Emotional Speech (JTES) as an emotional speech corpus. This corpus consisted of tweets and had an emotional label assigned to each utterance. Corpus adaptation is possible using the utterances contained in this corpus. However, regarding the language model, the amount of adaptation data is insufficient. To solve this problem, we propose an adaptation of the language model by using online tweet data downloaded from the internet. The sentences used for adaptation were extracted from the tweet data based on certain rules. We extracted the data of 25.86 M words and used them for adaptation. In the recognition experiments, the baseline word error rate was 36.11%, whereas that with the acoustic and language model adaptation was 17.77%. The results demonstrated the effectiveness of the proposed method.

  • Single-Line Text Detection in Multi-Line Text with Narrow Spacing for Line-Based Character Recognition

    Chee Siang LEOW  Hideaki YAJIMA  Tomoki KITAGAWA  Hiromitsu NISHIZAKI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/08/31
      Vol:
    E106-D No:12
      Page(s):
    2097-2106

    Text detection is a crucial pre-processing step in optical character recognition (OCR) for the accurate recognition of text, including both fonts and handwritten characters, in documents. While current deep learning-based text detection tools can detect text regions with high accuracy, they often treat multiple lines of text as a single region. To perform line-based character recognition, it is necessary to divide the text into individual lines, which requires a line detection technique. This paper focuses on the development of a new approach to single-line detection in OCR that is based on the existing Character Region Awareness For Text detection (CRAFT) model and incorporates a deep neural network specialized in line segmentation. However, this new method may still detect multiple lines as a single text region when multi-line text with narrow spacing is present. To address this, we also introduce a post-processing algorithm to detect single text regions using the output of the single-line segmentation. Our proposed method successfully detects single lines, even in multi-line text with narrow line spacing, and hence improves the accuracy of OCR.

  • Decomposition of P6-Free Chordal Bipartite Graphs

    Asahi TAKAOKA  

     
    LETTER-Graphs and Networks

      Pubricized:
    2023/05/17
      Vol:
    E106-A No:11
      Page(s):
    1436-1439

    Canonical decomposition for bipartite graphs, which was introduced by Fouquet, Giakoumakis, and Vanherpe (1999), is a decomposition scheme for bipartite graphs associated with modular decomposition. Weak-bisplit graphs are bipartite graphs totally decomposable (i.e., reducible to single vertices) by canonical decomposition. Canonical decomposition comprises series, parallel, and K+S decomposition. This paper studies a decomposition scheme comprising only parallel and K+S decomposition. We show that bipartite graphs totally decomposable by this decomposition are precisely P6-free chordal bipartite graphs. This characterization indicates that P6-free chordal bipartite graphs can be recognized in linear time using the recognition algorithm for weak-bisplit graphs presented by Giakoumakis and Vanherpe (2003).

  • A Driver Fatigue Detection Algorithm Based on Dynamic Tracking of Small Facial Targets Using YOLOv7

    Shugang LIU  Yujie WANG  Qiangguo YU  Jie ZHAN  Hongli LIU  Jiangtao LIU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/08/21
      Vol:
    E106-D No:11
      Page(s):
    1881-1890

    Driver fatigue detection has become crucial in vehicle safety technology. Achieving high accuracy and real-time performance in detecting driver fatigue is paramount. In this paper, we propose a novel driver fatigue detection algorithm based on dynamic tracking of Facial Eyes and Yawning using YOLOv7, named FEY-YOLOv7. The Coordinate Attention module is inserted into YOLOv7 to enhance its dynamic tracking accuracy by focusing on coordinate information. Additionally, a small target detection head is incorporated into the network architecture to promote the feature extraction ability of small facial targets such as eyes and mouth. In terms of compution, the YOLOv7 network architecture is significantly simplified to achieve high detection speed. Using the proposed PERYAWN algorithm, driver status is labeled and detected by four classes: open_eye, closed_eye, open_mouth, and closed_mouth. Furthermore, the Guided Image Filtering algorithm is employed to enhance image details. The proposed FEY-YOLOv7 is trained and validated on RGB-infrared datasets. The results show that FEY-YOLOv7 has achieved mAP of 0.983 and FPS of 101. This indicates that FEY-YOLOv7 is superior to state-of-the-art methods in accuracy and speed, providing an effective and practical solution for image-based driver fatigue detection.

  • Prior Information Based Decomposition and Reconstruction Learning for Micro-Expression Recognition

    Jinsheng WEI  Haoyu CHEN  Guanming LU  Jingjie YAN  Yue XIE  Guoying ZHAO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/07/13
      Vol:
    E106-D No:10
      Page(s):
    1752-1756

    Micro-expression recognition (MER) draws intensive research interest as micro-expressions (MEs) can infer genuine emotions. Prior information can guide the model to learn discriminative ME features effectively. However, most works focus on researching the general models with a stronger representation ability to adaptively aggregate ME movement information in a holistic way, which may ignore the prior information and properties of MEs. To solve this issue, driven by the prior information that the category of ME can be inferred by the relationship between the actions of facial different components, this work designs a novel model that can conform to this prior information and learn ME movement features in an interpretable way. Specifically, this paper proposes a Decomposition and Reconstruction-based Graph Representation Learning (DeRe-GRL) model to efectively learn high-level ME features. DeRe-GRL includes two modules: Action Decomposition Module (ADM) and Relation Reconstruction Module (RRM), where ADM learns action features of facial key components and RRM explores the relationship between these action features. Based on facial key components, ADM divides the geometric movement features extracted by the graph model-based backbone into several sub-features, and learns the map matrix to map these sub-features into multiple action features; then, RRM learns weights to weight all action features to build the relationship between action features. The experimental results demonstrate the effectiveness of the proposed modules, and the proposed method achieves competitive performance.

  • Low-Complexity and Accurate Noise Suppression Based on an a Priori SNR Model for Robust Speech Recognition on Embedded Systems and Its Evaluation in a Car Environment

    Masanori TSUJIKAWA  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/02/28
      Vol:
    E106-A No:9
      Page(s):
    1224-1233

    In this paper, we propose a low-complexity and accurate noise suppression based on an a priori SNR (Speech to Noise Ratio) model for greater robustness w.r.t. short-term noise-fluctuation. The a priori SNR, the ratio of speech spectra and noise spectra in the spectral domain, represents the difference between speech features and noise features in the feature domain, including the mel-cepstral domain and the logarithmic power spectral domain. This is because logarithmic operations are used for domain conversions. Therefore, an a priori SNR model can easily be expressed in terms of the difference between the speech model and the noise model, which are modeled by the Gaussian mixture models, and it can be generated with low computational cost. By using a priori SNRs accurately estimated on the basis of an a priori SNR model, it is possible to calculate accurate coefficients of noise suppression filters taking into account the variance of noise, without serious increase in computational cost over that of a conventional model-based Wiener filter (MBW). We have conducted in-car speech recognition evaluation using the CENSREC-2 database, and a comparison of the proposed method with a conventional MBW showed that the recognition error rate for all noise environments was reduced by 9%, and that, notably, that for audio-noise environments was reduced by 11%. We show that the proposed method can be processed with low levels of computational and memory resources through implementation on a digital signal processor.

  • EMRNet: Efficient Modulation Recognition Networks for Continuous-Wave Radar Signals

    Kuiyu CHEN  Jingyi ZHANG  Shuning ZHANG  Si CHEN  Yue MA  

     
    BRIEF PAPER-Electronic Instrumentation and Control

      Pubricized:
    2023/03/24
      Vol:
    E106-C No:8
      Page(s):
    450-453

    Automatic modulation recognition(AMR) of radar signals is a currently active area, especially in electronic reconnaissance, where systems need to quickly identify the intercepted signal and formulate corresponding interference measures on computationally limited platforms. However, previous methods generally have high computational complexity and considerable network parameters, making the system unable to detect the signal timely in resource-constrained environments. This letter firstly proposes an efficient modulation recognition network(EMRNet) with tiny and low latency models to match the requirements for mobile reconnaissance equipments. One-dimensional residual depthwise separable convolutions block(1D-RDSB) with an adaptive size of receptive fields is developed in EMRNet to replace the traditional convolution block. With 1D-RDSB, EMRNet achieves a high classification accuracy and dramatically reduces computation cost and network paraments. The experiment results show that EMRNet can achieve higher precision than existing 2D-CNN methods, while the computational cost and parament amount of EMRNet are reduced by about 13.93× and 80.88×, respectively.

  • Multi-Target Recognition Utilizing Micro-Doppler Signatures with Limited Supervision

    Jingyi ZHANG  Kuiyu CHEN  Yue MA  

     
    BRIEF PAPER-Electronic Instrumentation and Control

      Pubricized:
    2023/03/06
      Vol:
    E106-C No:8
      Page(s):
    454-457

    Previously, convolutional neural networks have made tremendous progress in target recognition based on micro-Doppler radar. However, these studies only considered the presence of one target at a time in the surveillance area. Simultaneous multi-targets recognition for surveillance radar remains a pretty challenging issue. To alleviate this issue, this letter develops a multi-instance multi-label (MIML) learning strategy, which can automatically locate the crucial input patterns that trigger the labels. Benefitting from its powerful target-label relation discovery ability, the proposed framework can be trained with limited supervision. We emphasize that only echoes from single targets are involved in training data, avoiding the preparation and annotation of multi-targets echo in the training stage. To verify the validity of the proposed method, we model two representative ground moving targets, i.e., person and wheeled vehicles, and carry out numerous comparative experiments. The result demonstrates that the developed framework can simultaneously recognize multiple targets and is also robust to variation of the signal-to-noise ratio (SNR), the initial position of targets, and the difference in scattering coefficient.

  • A Lightweight End-to-End Speech Recognition System on Embedded Devices

    Yu WANG  Hiromitsu NISHIZAKI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2023/04/13
      Vol:
    E106-D No:7
      Page(s):
    1230-1239

    In industry, automatic speech recognition has come to be a competitive feature for embedded products with poor hardware resources. In this work, we propose a tiny end-to-end speech recognition model that is lightweight and easily deployable on edge platforms. First, instead of sophisticated network structures, such as recurrent neural networks, transformers, etc., the model we propose mainly uses convolutional neural networks as its backbone. This ensures that our model is supported by most software development kits for embedded devices. Second, we adopt the basic unit of MobileNet-v3, which performs well in computer vision tasks, and integrate the features of the hidden layer at different scales, thus compressing the number of parameters of the model to less than 1 M and achieving an accuracy greater than that of some traditional models. Third, in order to further reduce the CPU computation, we directly extract acoustic representations from 1-dimensional speech waveforms and use a self-supervised learning approach to encourage the convergence of the model. Finally, to solve some problems where hardware resources are relatively weak, we use a prefix beam search decoder to dynamically extend the search path with an optimized pruning strategy and an additional initialism language model to capture the probability of between-words in advance and thus avoid premature pruning of correct words. In our experiments, according to a number of evaluation categories, our end-to-end model outperformed several tiny speech recognition models used for embedded devices in related work.

  • A Multitask Learning Approach Based on Cascaded Attention Network and Self-Adaption Loss for Speech Emotion Recognition

    Yang LIU  Yuqi XIA  Haoqin SUN  Xiaolei MENG  Jianxiong BAI  Wenbo GUAN  Zhen ZHAO  Yongwei LI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2022/12/08
      Vol:
    E106-A No:6
      Page(s):
    876-885

    Speech emotion recognition (SER) has been a complex and difficult task for a long time due to emotional complexity. In this paper, we propose a multitask deep learning approach based on cascaded attention network and self-adaption loss for SER. First, non-personalized features are extracted to represent the process of emotion change while reducing external variables' influence. Second, to highlight salient speech emotion features, a cascade attention network is proposed, where spatial temporal attention can effectively locate the regions of speech that express emotion, while self-attention reduces the dependence on external information. Finally, the influence brought by the differences in gender and human perception of external information is alleviated by using a multitask learning strategy, where a self-adaption loss is introduced to determine the weights of different tasks dynamically. Experimental results on IEMOCAP dataset demonstrate that our method gains an absolute improvement of 1.97% and 0.91% over state-of-the-art strategies in terms of weighted accuracy (WA) and unweighted accuracy (UA), respectively.

  • Effectiveness of Feature Extraction System for Multimodal Sensor Information Based on VRAE and Its Application to Object Recognition

    Kazuki HAYASHI  Daisuke TANAKA  

     
    LETTER-Object Recognition and Tracking

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:5
      Page(s):
    833-835

    To achieve object recognition, it is necessary to find the unique features of the objects to be recognized. Results in prior research suggest that methods that use multiple modalities information are effective to find the unique features. In this paper, the overview of the system that can extract the features of the objects to be recognized by integrating visual, tactile, and auditory information as multimodal sensor information with VRAE is shown. Furthermore, a discussion about changing the combination of modalities information is also shown.

  • Chinese Named Entity Recognition Method Based on Dictionary Semantic Knowledge Enhancement

    Tianbin WANG  Ruiyang HUANG  Nan HU  Huansha WANG  Guanghan CHU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/02/15
      Vol:
    E106-D No:5
      Page(s):
    1010-1017

    Chinese Named Entity Recognition is the fundamental technology in the field of the Chinese Natural Language Process. It is extensively adopted into information extraction, intelligent question answering, and knowledge graph. Nevertheless, due to the diversity and complexity of Chinese, most Chinese NER methods fail to sufficiently capture the character granularity semantics, which affects the performance of the Chinese NER. In this work, we propose DSKE-Chinese NER: Chinese Named Entity Recognition based on Dictionary Semantic Knowledge Enhancement. We novelly integrate the semantic information of character granularity into the vector space of characters and acquire the vector representation containing semantic information by the attention mechanism. In addition, we verify the appropriate number of semantic layers through the comparative experiment. Experiments on public Chinese datasets such as Weibo, Resume and MSRA show that the model outperforms character-based LSTM baselines.

  • Subjective Difficulty Estimation of Educational Comics Using Gaze Features

    Kenya SAKAMOTO  Shizuka SHIRAI  Noriko TAKEMURA  Jason ORLOSKY  Hiroyuki NAGATAKI  Mayumi UEDA  Yuki URANISHI  Haruo TAKEMURA  

     
    PAPER-Educational Technology

      Pubricized:
    2023/02/03
      Vol:
    E106-D No:5
      Page(s):
    1038-1048

    This study explores significant eye-gaze features that can be used to estimate subjective difficulty while reading educational comics. Educational comics have grown rapidly as a promising way to teach difficult topics using illustrations and texts. However, comics include a variety of information on one page, so automatically detecting learners' states such as subjective difficulty is difficult with approaches such as system log-based detection, which is common in the Learning Analytics field. In order to solve this problem, this study focused on 28 eye-gaze features, including the proposal of three new features called “Variance in Gaze Convergence,” “Movement between Panels,” and “Movement between Tiles” to estimate two degrees of subjective difficulty. We then ran an experiment in a simulated environment using Virtual Reality (VR) to accurately collect gaze information. We extracted features in two unit levels, page- and panel-units, and evaluated the accuracy with each pattern in user-dependent and user-independent settings, respectively. Our proposed features achieved an average F1 classification-score of 0.721 and 0.742 in user-dependent and user-independent models at panel unit levels, respectively, trained by a Support Vector Machine (SVM).

1-20hit(860hit)