The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] solution(404hit)

1-20hit(404hit)

  • A Channel Contrastive Attention-Based Local-Nonlocal Mutual Block on Super-Resolution Open Access

    Yuhao LIU  Zhenzhong CHU  Lifei WEI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2024/04/23
      Vol:
    E107-D No:9
      Page(s):
    1219-1227

    In the realm of Single Image Super-Resolution (SISR), the meticulously crafted Nonlocal Sparse Attention-based block demonstrates its efficacy in noise reduction and computational cost reduction for nonlocal (global) features. However, it neglect the traditional Convolutional-based block, which proficient in handling local features. Thus, merging both the Nonlocal Sparse Attention-based block and the Convolutional-based block to concurrently manage local and nonlocal features poses a significant challenge. To tackle the aforementioned issues, this paper introduces the Channel Contrastive Attention-based Local-Nonlocal Mutual block (CCLN) for Super-Resolution (SR). (1) We introduce the CCLN block, encompassing the Local Sparse Convolutional-based block for local features and the Nonlocal Sparse Attention-based network block for nonlocal features. (2) We introduce Channel Contrastive Attention (CCA) blocks, incorporating Sparse Aggregation into Convolutional-based blocks. Additionally, we introduce a robust framework to fuse these two blocks, ensuring that each branch operates according to its respective strengths. (3) The CCLN block can seamlessly integrate into established network backbones like the Enhanced Deep Super-Resolution network (EDSR), achieving in the Channel Attention based Local-Nonlocal Mutual Network (CCLNN). Experimental results show that our CCLNN effectively leverages both local and nonlocal features, outperforming other state-of-the-art algorithms.

  • A Dual-Branch Algorithm for Semantic-Focused Face Super-Resolution Reconstruction Open Access

    Qi QI  Liuyi MENG  Ming XU  Bing BAI  

     
    LETTER-Image

      Pubricized:
    2024/03/18
      Vol:
    E107-A No:8
      Page(s):
    1435-1439

    In face super-resolution reconstruction, the interference caused by the texture and color of the hair region on the details and contours of the face region can negatively affect the reconstruction results. This paper proposes a semantic-based, dual-branch face super-resolution algorithm to address the issue of varying reconstruction complexities and mutual interference among different pixel semantics in face images. The algorithm clusters pixel semantic data to create a hierarchical representation, distinguishing between facial pixel regions and hair pixel regions. Subsequently, independent image enhancement is applied to these distinct pixel regions to mitigate their interference, resulting in a vivid, super-resolution face image.

  • Investigating the Efficacy of Partial Decomposition in Kit-Build Concept Maps for Reducing Cognitive Load and Enhancing Reading Comprehension Open Access

    Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2024/01/11
      Vol:
    E107-D No:5
      Page(s):
    714-727

    This study investigates the efficacy of a partial decomposition approach in concept map recomposition tasks to reduce cognitive load while maintaining the benefits of traditional recomposition approaches. Prior research has demonstrated that concept map recomposition, involving the rearrangement of unconnected concepts and links, can enhance reading comprehension. However, this task often imposes a significant burden on learners’ working memory. To address this challenge, this study proposes a partial recomposition approach where learners are tasked with recomposing only a portion of the concept map, thereby reducing the problem space. The proposed approach aims at lowering the cognitive load while maintaining the benefits of traditional recomposition task, that is, learning effect and motivation. To investigate the differences in cognitive load, learning effect, and motivation between the full decomposition (the traditional approach) and partial decomposition (the proposed approach), we have conducted an experiment (N=78) where the participants were divided into two groups of “full decomposition” and “partial decomposition”. The full decomposition group was assigned the task of recomposing a concept map from a set of unconnected concept nodes and links, while the partial decomposition group worked with partially connected nodes and links. The experimental results show a significant reduction in the embedded cognitive load of concept map recomposition across different dimensions while learning effect and motivation remained similar between the conditions. On the basis of these findings, educators are recommended to incorporate partially disconnected concept maps in recomposition tasks to optimize time management and sustain learner motivation. By implementing this approach, instructors can conserve cognitive resources and allocate saved energy and time to other activities that enhance the overall learning process.

  • An Extension of Physical Optics Approximation for Dielectric Wedge Diffraction for a TM-Polarized Plane Wave Open Access

    Duc Minh NGUYEN  Hiroshi SHIRAI  Se-Yun KIM  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/11/08
      Vol:
    E107-C No:5
      Page(s):
    115-123

    In this study, the edge diffraction of a TM-polarized electromagnetic plane wave by two-dimensional dielectric wedges has been analyzed. An asymptotic solution for the radiation field has been derived from equivalent electric and magnetic currents which can be determined by the geometrical optics (GO) rays. This method may be regarded as an extended version of physical optics (PO). The diffracted field has been represented in terms of cotangent functions whose singularity behaviors are closely related to GO shadow boundaries. Numerical calculations are performed to compare the results with those by other reference solutions, such as the hidden rays of diffraction (HRD) and a numerical finite-difference time-domain (FDTD) simulation. Comparisons of the diffraction effect among these results have been made to propose additional lateral waves in the denser media.

  • A Small-Data Solution to Data-Driven Lyapunov Equations: Data Reduction from O(n2) to O(n) Open Access

    Keitaro TSUJI  Shun-ichi AZUMA  Ikumi BANNO  Ryo ARIIZUMI  Toru ASAI  Jun-ichi IMURA  

     
    PAPER

      Pubricized:
    2023/10/24
      Vol:
    E107-A No:5
      Page(s):
    806-812

    When a mathematical model is not available for a dynamical system, it is reasonable to use a data-driven approach for analysis and control of the system. With this motivation, the authors have recently developed a data-driven solution to Lyapunov equations, which uses not the model but the data of several state trajectories of the system. However, the number of state trajectories to uniquely determine the solution is O(n2) for the dimension n of the system. This prevents us from applying the method to a case with a large n. Thus, this paper proposes a novel class of data-driven Lyapunov equations, which requires a smaller amount of data. Although the previous method constructs one scalar equation from one state trajectory, the proposed method constructs three scalar equations from any combination of two state trajectories. Based on this idea, we derive data-driven Lyapunov equations such that the number of state trajectories to uniquely determine the solution is O(n).

  • Effects of Parasitic Elements on L-Type LC/CL Matching Circuits Open Access

    Satoshi TANAKA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    PAPER

      Pubricized:
    2023/11/07
      Vol:
    E107-A No:5
      Page(s):
    719-726

    L-type LC/CL matching circuits are well known for their simple analytical solutions and have been applied to many radio-frequency (RF) circuits. When actually constructing a circuit, parasitic elements are added to inductors and capacitors. Therefore, each L and C element has a self-resonant frequency, which affects the characteristics of the matching circuit. In this paper, the parallel parasitic capacitance to the inductor and the series parasitic inductor to the capacitance are taken up as parasitic elements, and the details of the effects of the self-resonant frequency of each element on the S11, voltage standing wave ratio (VSWR) and S21 characteristics are reported. When a parasitic element is added, each characteristic basically tends to deteriorate as the self-resonant frequency decreases. However, as an interesting feature, we found that the combination of resonant frequencies determines the VSWR and passband characteristics, regardless of whether it is the inductor or the capacitor.

  • Re-Evaluating Syntax-Based Negation Scope Resolution

    Asahi YOSHIDA  Yoshihide KATO  Shigeki MATSUBARA  

     
    LETTER-Natural Language Processing

      Pubricized:
    2023/10/16
      Vol:
    E107-D No:1
      Page(s):
    165-168

    Negation scope resolution is the process of detecting the negated part of a sentence. Unlike the syntax-based approach employed in previous researches, state-of-the-art methods performed better without the explicit use of syntactic structure. This work revisits the syntax-based approach and re-evaluates the effectiveness of syntactic structure in negation scope resolution. We replace the parser utilized in the prior works with state-of-the-art parsers and modify the syntax-based heuristic rules. The experimental results demonstrate that the simple modifications enhance the performance of the prior syntax-based method to the same level as state-of-the-art end-to-end neural-based methods.

  • Giving a Quasi-Initial Solution to Ising Machines by Controlling External Magnetic Field Coefficients

    Soma KAWAKAMI  Kentaro OHNO  Dema BA  Satoshi YAGI  Junji TERAMOTO  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    52-62

    Ising machines can find optimum or quasi-optimum solutions of combinatorial optimization problems efficiently and effectively. It is known that, when a good initial solution is given to an Ising machine, we can finally obtain a solution closer to the optimal solution. However, several Ising machines cannot directly accept an initial solution due to its computational nature. In this paper, we propose a method to give quasi-initial solutions into Ising machines that cannot directly accept them. The proposed method gives the positive or negative external magnetic field coefficients (magnetic field controlling term) based on the initial solutions and obtains a solution by using an Ising machine. Then, the magnetic field controlling term is re-calculated every time an Ising machine repeats the annealing process, and hence the solution is repeatedly improved on the basis of the previously obtained solution. The proposed method is applied to the capacitated vehicle routing problem with an additional constraint (constrained CVRP) and the max-cut problem. Experimental results show that the total path distance is reduced by 5.78% on average compared to the initial solution in the constrained CVRP and the sum of cut-edge weight is increased by 1.25% on average in the max-cut problem.

  • Gain and Output Optimization Scheme for Block Low-Resolution DACs in Massive MIMO Downlink

    Taichi YAMAKADO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1200-1209

    In this paper, a nonlinear quantized precoding scheme for low-resolution digital-analog converters (DACs) in a massive multiple-input multiple-output (MIMO) system is proposed. The nonlinear quantized precoding determines transmit antenna outputs with a transmit symbol and channel state information. In a full-digital massive MIMO system, low-resolution DACs are used to suppress power consumption. Conventional precoding algorithms for low-resolution DACs do not optimize transmit antenna gains individually. Thus, in this paper, a precoding scheme that optimizes individual transmit antenna gains as well as the DAC outputs is proposed. In the proposed scheme, the subarray of massive MIMO antennas is treated virtually as a single antenna element. Numerical results obtained through computer simulation show that the proposed precoding scheme achieves bit error rate performance close to that of the conventional precoding scheme with much smaller antenna gains on a CDL-A channel.

  • Brain Tumor Classification using Under-Sampled k-Space Data: A Deep Learning Approach

    Tania SULTANA  Sho KUROSAKI  Yutaka JITSUMATSU  Shigehide KUHARA  Jun'ichi TAKEUCHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/08/15
      Vol:
    E106-D No:11
      Page(s):
    1831-1841

    We assess how well the recently created MRI reconstruction technique, Multi-Resolution Convolutional Neural Network (MRCNN), performs in the core medical vision field (classification). The primary goal of MRCNN is to identify the best k-space undersampling patterns to accelerate the MRI. In this study, we use the Figshare brain tumor dataset for MRI classification with 3064 T1-weighted contrast-enhanced MRI (CE-MRI) over three categories: meningioma, glioma, and pituitary tumors. We apply MRCNN to the dataset, which is a method to reconstruct high-quality images from under-sampled k-space signals. Next, we employ the pre-trained VGG16 model, which is a Deep Neural Network (DNN) based image classifier to the MRCNN restored MRIs to classify the brain tumors. Our experiments showed that in the case of MRCNN restored data, the proposed brain tumor classifier achieved 92.79% classification accuracy for a 10% sampling rate, which is slightly higher than that of SRCNN, MoDL, and Zero-filling methods have 91.89%, 91.89%, and 90.98% respectively. Note that our classifier was trained using the dataset consisting of the images with full sampling and their labels, which can be regarded as a model of the usual human diagnostician. Hence our results would suggest MRCNN is useful for human diagnosis. In conclusion, MRCNN significantly enhances the accuracy of the brain tumor classification system based on the tumor location using under-sampled k-space signals.

  • Distilling Distribution Knowledge in Normalizing Flow

    Jungwoo KWON  Gyeonghwan KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/04/26
      Vol:
    E106-D No:8
      Page(s):
    1287-1291

    In this letter, we propose a feature-based knowledge distillation scheme which transfers knowledge between intermediate blocks of teacher and student with flow-based architecture, specifically Normalizing flow in our implementation. In addition to the knowledge transfer scheme, we examine how configuration of the distillation positions impacts on the knowledge transfer performance. To evaluate the proposed ideas, we choose two knowledge distillation baseline models which are based on Normalizing flow on different domains: CS-Flow for anomaly detection and SRFlow-DA for super-resolution. A set of performance comparison to the baseline models with popular benchmark datasets shows promising results along with improved inference speed. The comparison includes performance analysis based on various configurations of the distillation positions in the proposed scheme.

  • A Computer-Aided Solution to Find All Feasible Schemes of Cyclic Interference Alignment for Propagation-Delay Based X Channels

    Conggai LI  Feng LIU  Xin ZHOU  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    868-870

    To obtain a full picture of potential applications for propagation-delay based X channels, it is important to obtain all feasible schemes of cyclic interference alignment including the encoder, channel instance, and decoder. However, when the dimension goes larger, theoretical analysis about this issue will become tedious and even impossible. In this letter, we propose a computer-aided solution by searching the channel space and the scheduling space, which can find all feasible schemes in details. Examples are given for some typical X channels. Computational complexity is further analyzed.

  • Orthogonal Deep Feature Decomposition Network for Cross-Resolution Person Re-Identification

    Rui SUN  Zi YANG  Lei ZHANG  Yiheng YU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/08/23
      Vol:
    E105-D No:11
      Page(s):
    1994-1997

    Person images captured by surveillance cameras in real scenes often have low resolution (LR), which suffers from severe degradation in recognition performance when matched with pre-stocked high-resolution (HR) images. There are existing methods which typically employ super-resolution (SR) techniques to address the resolution discrepancy problem in person re-identification (re-ID). However, SR techniques are intended to enhance the human eye visual fidelity of images without caring about the recovery of pedestrian identity information. To cope with this challenge, we propose an orthogonal depth feature decomposition network. And we decompose pedestrian features into resolution-related features and identity-related features who are orthogonal to each other, from which we design the identity-preserving loss and resolution-invariant loss to ensure the recovery of pedestrian identity information. When compared with the SOTA method, experiments on the MLR-CUHK03 and MLR-VIPeR datasets demonstrate the superiority of our method.

  • Reduction of Out-of-Band Radiation with Quantized Precoding Using Gibbs Sampling in Massive MU-MIMO-OFDM

    Taichi YAMAKADO  Riki OKAWA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1240-1248

    In this paper, a non-linear precoding algorithm with low out-of-band (OOB) radiation is proposed for massive multiple-input multiple-output (MIMO) systems. Massive MIMO sets more than one hundred antennas at each base station to achieve higher spectral efficiency and throughput. Full digital massive MIMO may constrain the resolution of digital-to-analog converters (DACs) since each DAC consumes a large amount of power. In massive MIMO systems with low resolution DACs, designing methods of DAC output signals by nonlinear processing are being investigated. The conventional scheme focuses only on a sum rate or errors in the received signals and so triggers large OOB radiation. This paper proposes an optimization criterion that takes OOB radiation power into account. Gibbs sampling is used as an algorithm to find sub-optimal solutions given this criterion. Numerical results obtained through computer simulation show that the proposed criterion reduces mean OOB radiation power by a factor of 10 as compared with the conventional criterion. The proposed criterion also reduces OOB radiation while increasing the average sum rate by optimizing the weight factor for the OOB radiation. As a result, the proposed criterion achieves approximately 1.3 times higher average sum rates than an error-based criterion. On the other hand, as compared with a sum rate based criterion, the throughput on each subcarrier shows less variation which reduces the number of link adaptation options needed although the average sum rate of the proposed criterion is smaller.

  • Interpretation Method of Inversion Phenomena on Backward Transient Scattered Field Components by a Coated Metal Cylinder

    Toru KAWANO  Keiji GOTO  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/02/24
      Vol:
    E105-C No:9
      Page(s):
    389-397

    An interpretation method of inversion phenomena is newly proposed for backward transient scattered field components for both E- and H-polarizations when an ultra-wideband (UWB) pulse wave radiated from a line source is incident on a two-dimensional metal cylinder covered with a lossless dielectric medium layer (coated metal cylinder). A time-domain (TD) asymptotic solution, which is referred to as a TD saddle point technique (TD-SPT), is derived by applying the SPT in evaluating a backward transient scattered field which is expressed by an integral form. The TD-SPT is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series, thereby being able to extract and calculate any backward transient scattered field component from a response waveform. The TD-SPT is useful in understanding the response waveform of a backward transient scattered field by a coated metal cylinder because it can give us the peak value and arrival time of any field component, namely DGO and RGO components, and interpret analytically inversion phenomenon of any field component. The accuracy, validity, and practicality of the TD-SPT are clarified by comparing it with two kinds of reference solutions.

  • Asynchronous Periodic Interference Signals Cancellation in Frequency Domain

    Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1087-1096

    This paper proposes a novel interference cancellation technique that prevents radio receivers from degrading due to periodic interference signals caused by electromagnetic waves emitted from high power circuits. The proposed technique cancels periodic interference signals in the frequency domain, even if the periodic interference signals drift in the time domain. We propose a drift estimation based on a super resolution technique such as ESPRIT. Moreover, we propose a sequential drift estimation to enhance the drift estimation performance. The proposed technique employs a linear filter based on the minimum mean square error criterion with assistance of the estimated drifts for the interference cancellation. The performance of the proposed technique is confirmed by computer simulation. The proposed technique achieves a gain of more than 40dB at the higher frequency part in the band. The proposed canceler achieves such superior performance, if the parameter sets are carefully selected. The proposed sequential drift estimation relaxes the parameter constraints, and enables the proposed cancellation to achieve the performance upper bound.

  • Depth Image Noise Reduction and Super-Resolution by Pixel-Wise Multi-Frame Fusion

    Masahiro MURAYAMA  Toyohiro HIGASHIYAMA  Yuki HARAZONO  Hirotake ISHII  Hiroshi SHIMODA  Shinobu OKIDO  Yasuyoshi TARUTA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/03/04
      Vol:
    E105-D No:6
      Page(s):
    1211-1224

    High-quality depth images are required for stable and accurate computer vision. Depth images captured by depth cameras tend to be noisy, incomplete, and of low-resolution. Therefore, increasing the accuracy and resolution of depth images is desirable. We propose a method for reducing the noise and holes from depth images pixel by pixel, and increasing resolution. For each pixel in the target image, the linear space from the focal point of the camera through each pixel to the existing object is divided into equally spaced grids. In each grid, the difference from each grid to the object surface is obtained from multiple tracked depth images, which have noisy depth values of the respective image pixels. Then, the coordinates of the correct object surface are obtainable by reducing the depth random noise. The missing values are completed. The resolution can also be increased by creating new pixels between existing pixels and by then using the same process as that used for noise reduction. Evaluation results have demonstrated that the proposed method can do processing with less GPU memory. Furthermore, the proposed method was able to reduce noise more accurately, especially around edges, and was able to process more details of objects than the conventional method. The super-resolution of the proposed method also produced a high-resolution depth image with smoother and more accurate edges than the conventional methods.

  • A Discussion on Physical Optics Approximation for Edge Diffraction by A Conducting Wedge

    Duc Minh NGUYEN  Hiroshi SHIRAI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2021/11/22
      Vol:
    E105-C No:5
      Page(s):
    176-183

    In this study, edge diffraction of an electromagnetic plane wave by two-dimensional conducting wedges has been analyzed by the physical optics (PO) method for both E and H polarizations. Non-uniform and uniform asymptotic solutions of diffracted fields have been derived. A unified edge diffraction coefficient has also been derived with four cotangent functions from the conventional angle-dependent coefficients. Numerical calculations have been made to compare the results with those by other methods, such as the exact solution and the uniform geometrical theory of diffraction (UTD). A good agreement has been observed to confirm the validity of our method.

  • Image Super-Resolution via Generative Adversarial Networks Using Metric Projections onto Consistent Sets for Low-Resolution Inputs

    Hiroya YAMAMOTO  Daichi KITAHARA  Hiroki KURODA  Akira HIRABAYASHI  

     
    PAPER-Image

      Pubricized:
    2021/09/29
      Vol:
    E105-A No:4
      Page(s):
    704-718

    This paper addresses single image super-resolution (SR) based on convolutional neural networks (CNNs). It is known that recovery of high-frequency components in output SR images of CNNs learned by the least square errors or least absolute errors is insufficient. To generate realistic high-frequency components, SR methods using generative adversarial networks (GANs), composed of one generator and one discriminator, are developed. However, when the generator tries to induce the discriminator's misjudgment, not only realistic high-frequency components but also some artifacts are generated, and objective indices such as PSNR decrease. To reduce the artifacts in the GAN-based SR methods, we consider the set of all SR images whose square errors between downscaling results and the input image are within a certain range, and propose to apply the metric projection onto this consistent set in the output layers of the generators. The proposed technique guarantees the consistency between output SR images and input images, and the generators with the proposed projection can generate high-frequency components with few artifacts while keeping low-frequency ones as appropriate for the known noise level. Numerical experiments show that the proposed technique reduces artifacts included in the original SR images of a GAN-based SR method while generating realistic high-frequency components with better PSNR values in both noise-free and noisy situations. Since the proposed technique can be integrated into various generators if the downscaling process is known, we can give the consistency to existing methods with the input images without degrading other SR performance.

  • Face Super-Resolution via Triple-Attention Feature Fusion Network

    Kanghui ZHAO  Tao LU  Yanduo ZHANG  Yu WANG  Yuanzhi WANG  

     
    LETTER-Image

      Pubricized:
    2021/10/13
      Vol:
    E105-A No:4
      Page(s):
    748-752

    In recent years, compared with the traditional face super-resolution (SR) algorithm, the face SR based on deep neural network has shown strong performance. Among these methods, attention mechanism has been widely used in face SR because of its strong feature expression ability. However, the existing attention-based face SR methods can not fully mine the missing pixel information of low-resolution (LR) face images (structural prior). And they only consider a single attention mechanism to take advantage of the structure of the face. The use of multi-attention could help to enhance feature representation. In order to solve this problem, we first propose a new pixel attention mechanism, which can recover the structural details of lost pixels. Then, we design an attention fusion module to better integrate the different characteristics of triple attention. Experimental results on FFHQ data sets show that this method is superior to the existing face SR methods based on deep neural network.

1-20hit(404hit)