The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] thin(305hit)

101-120hit(305hit)

  • GRMR: Greedy Regional Multicast Routing for Wireless Sensor Networks

    Shimin SUN  Li HAN  Sunyoung HAN  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    21-29

    Information Centric Networking (ICN) is a promising architecture as an alternative paradigm to traditional IP networking. The innovative concepts, such as named data, name-based routing, and in-network caching bring lots of benefits to Wireless Sensor Networks (WSNs). Simple and robust communication model of ICN, based on interest/data messages exchange, is appealing to be deployed in WSNs. However, ICN architectures are designed for power supplied network devices rather than resource-constrained sensor nodes. Introducing ICN-liked architecture to WSNs needs to rethink the naming scheme and forwarding strategy to meet the requirements of energy efficiency and failure recovery. This paper presents a light weight data centric routing mechanism (GRMR) for interest dissemination and data delivery in location-aware WSNs. A simple naming scheme gives assistance for routing decision by individual nodes. Greedy routing engaging with regional multicast mechanism provides an efficient data centric routing approach. The performance is analytically evaluated and simulated in NS-2. The results indicate that GRMR achieves significant energy efficiency under investigated scenarios.

  • A Design of GS1 EPCglobal Application Level Events Extension for IoT Applications

    Chao-Wen TSENG  Yu-Chang CHEN  Chua-Huang HUANG  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    30-39

    EPCglobal architecture framework is divided into identify, capture, and share layers and defines a collection of standards. It is not fully adequate to build IoT applications because the transducer capability is lacking. IEEE 1451 is a set of standards that defines data exchange format, communication protocols, and various connection interfaces between sensors/actuators and transducer interface modules. By appending IEEE 1451 transducer capability to EPCglobal architecture framework, a consistent EPC scheme expression for heterogeneous things can be achieved at identify layer. It is benefit to extend the upper layers of EPCglobal architecture framework seamlessly. In this paper, we put our emphasis on how to leverage the transducer capability at the capture layer. A device cycle, transducer cycle specification, and transducer cycle report are introduced to collect and process sensor/actuator data. The design and implementation of GS1 EPCglobal Application Level Events (ALE) modules extension are proposed for explaining the design philosophy and verifying the feasibility. It will interact with the capture and query services of EPC Information Services (EPCIS) for IoT applications at the share layer. By cooperating and interacting with these layers of EPCglobal architecture framework, the IoT architecture EPCglobal+ based on international standards is built.

  • A Routing-Based Mobility Management Scheme for IoT Devices in Wireless Mobile Networks Open Access

    Masanori ISHINO  Yuki KOIZUMI  Toru HASEGAWA  

     
    PAPER

      Vol:
    E98-B No:12
      Page(s):
    2376-2381

    Internet of Things (IoT) devices, which have different characteristics in mobility and communication patterns from traditional mobile devices such as cellular phones, have come into existence as a new type of mobile devices. A strict mobility management scheme for providing highly mobile devices with seamless access is over-engineered for IoT devices' mobility management. We revisit current mobility management schemes for wireless mobile networks based on identifier/locator separation. In this paper, we focus on IoT communication patterns, and propose a new routing-based mobility scheme for them. Our scheme adopts routing information aggregation scheme using the Bloom Filter as a data structure to store routing information. We clarify the effectiveness of our scheme in IoT environments with a large number of IoT devices, and discuss its deployment issues.

  • Capacitance Sensor of Frequency Modulation for Integrated Touchpanels Using Amorphous In-Sn-Zn-O Thin-Film Transistors

    Yuki KOGA  Tokiyoshi MATSUDA  Mutsumi KIMURA  Dapeng WANG  Mamoru FURUTA  Masashi KASAMI  Shigekazu TOMAI  Koki YANO  

     
    BRIEF PAPER

      Vol:
    E98-C No:11
      Page(s):
    1028-1031

    We have developed a capacitance sensor of frequency modulation for integrated touchpanels using amorphous In-Sn-Zn-O (α-ITZO) thin-film transistors (TFTs). This capacitance sensor consists of a ring oscillator, whose one stage is replaced by a reset transistor, sensing transistor, and sensing electrode. The sensing electrode is prepared as one terminal to form a sensing capacitor when the other terminal is added by a finger. The ring oscillator consists of pseudo CMOS inverters. We confirm that the oscillation frequency changes when the other terminal is added. This result suggests that this capacitance sensor can be applied to integrated touchpanels on flatpanel displays.

  • Improved Direction-of-Arrival Estimation for Uncorrelated and Coherent Signals in the Presence of Multipath Propagation

    Xiao Yu LUO  Ping WEI  Lu GAN  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    881-884

    Recently, Gan and Luo have proposed a direction-of-arrival estimation method for uncorrelated and coherent signals in the presence of multipath propagation [3]. In their method, uncorrelated and coherent signals are distinguished by rotational invariance techniques and the property of the moduli of eigenvalues. However, due to the limitation of finite number of sensors, the pseudo-inverse matrix derived in this method is an approximate one. When the number of sensors is small, the approximation error is large, which adversely affects the property of the moduli of eigenvalues. Consequently, the method in [3] performs poorly in identifying uncorrelated signals under such circumstance. Moreover, in cases of small number of snapshots and low signal to noise ratio, the performance of their method is poor as well. Therefore, in this letter we first study the approximation in [3] and then propose an improved method that performs better in distinguishing between uncorrelated signals and coherent signals and in the aforementioned two cases. The simulation results demonstrate the effectiveness and efficiency of the proposed method.

  • Improvement of On/Off Ratio in Organic Field-effect Transistor Having Thin Molybdenum Trioxide Layer

    Masahiro MINAGAWA  Hidetsugu TAMURA  Ryo SAKIKAWA  Itsuki IKARASHI  Akira BABA  Kazunari SHINBO  Keizo KATO  Futao KANEKO  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    98-103

    We fabricated organic field-effect transistors (OFETs) having a thin layer of molybdenum trioxide (MoO$_3$), a Lewis acid, and evaluated their electrical characteristics. The insertion of a thin MoO$_3$ layer reduces the on/off ratio but improves the apparent mobility of the charge carriers. To identify the dominant mechanism responsible for this effect, we characterized devices having a 69-nm-thick pentacene layer with a 1-nm-thick MoO$_3$ layer either between the gold source and the drain electrodes or only directly under these electrodes. The former device exhibited a low on/off ratio, whereas the latter device exhibited an on/off ratio comparable to those of conventional pentacene OFETs without a thin MoO$_3$ layer, suggesting that the formation of charge-transfer (CT) complexes immediately above the conduction channel is the critical mechanism. CT complexes at the pentacene/MoO$_3$ interface immediately above the conduction channel contribute to the formation of an effective channel for off-currents as well as drain currents. Moreover, we also attempted to improve the on/off ratio by using a cloth to rub the surface of a thin MoO$_3$ layer immediately above the conduction channel to create what we believe to be a profile with abrupt changes in height in the direction of the drain current conduction in OFETs. Consequently, it was found that such a rubbed MoO$_3$ layer had a surface with a scratched pattern, and the on/off ratio of the OFET was improved, indicating that controlling the CT complex formation by patterning a MoO$_3$ layer can reduce the off-current in OFETs having a pentacene/MoO$_3$ active layer.

  • Energy-Efficient Sensor Device Personalization Scheme for the Internet of Things and Wireless Sensor Networks

    ByungBog LEE  Se-Jin KIM  

     
    PAPER-Network

      Vol:
    E98-B No:1
      Page(s):
    231-241

    In this paper, we propose a novel energy-efficient sensor device management scheme called sensor device personalization (SDP) for the Internet of things (IoT) and wireless sensor networks (WSNs) based on the IEEE 802.15.4 unslotted carrier sense multiple access with collision avoidance (CSMA/CA). In the IoT and WSNs with the star topology, a coordinator device (CD), user devices (UDs), and sensor devices (SDs) compose a network, and the UDs such as smart phones and tablet PCs manage the SDs, which consist of various sensors and communication modules, e.g., smart fridge, robot cleaner, heating and cooling system, and so on, through the CD. Thus, the CD consumes a lot of energy to relay packets between the UDs and the SDs and also has a longer packet transmission delay. Therefore, in order to reduce the energy consumption and packet transmission delay, in the proposed SDP scheme, the UDs obtain a list of SD profiles (including SDs' address information) that the UDs want to manage from the CD, and then the UDs and the SDs directly exchange control messages using the addresses of the SDs. Through analytical models, we show that the proposed SDP scheme outperforms the conventional scheme in terms of normalized throughput, packet transmission delay, packet loss probability, and total energy consumption.

  • Key Update Mechanism Using All-or-Nothing Transform for Network Storage of Encrypted Data

    Dai WATANABE  Masayuki YOSHINO  

     
    PAPER-Foundation

      Vol:
    E98-A No:1
      Page(s):
    162-170

    Cryptography is now popularized and is widely used anywhere for many aims such as data confidentiality and integrity. The cryptographic key has a limited lifetime. For example, the National Institute of Standards and Technology published SP800-57 in order to provide cryptographic key management guidance, and it strictly limits the lifetime of the cryptographic key and the lifetime of encrypted data. That means, the data encryption key is required to be periodically updated and the associated encrypted data is required to be re-encrypted with the new key each time. The cost, especially network traffic, is crucial if the encrypted data is away from the key. In this paper we discuss what to be achieved by key updating and propose a key update mechanism reducing the communication and computation cost of re-encryption.

  • Measurement of Length of a Single Tooth Using PCA-Signature and Bezier Curve

    Pramual CHOORAT  Werapon CHIRACHARIT  Kosin CHAMNONGTHAI  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:11
      Page(s):
    2161-2169

    In developing an automatic system of a single tooth length measurement on x-ray image, since a tooth shape is assumed to be straight and curve, an algorithm which can accurately deal with straight and curve is required. This paper proposes an automatic algorithm for measuring the length of single straight and curve teeth. In the algorithm consisting of control point determination, curve fitting, and length measurement, PCA is employed to find the first and second principle axes as vertical and horizontal ones of the tooth, and two terminal points of vertical axis and the junction of those axes are determined as three first-order control points. Signature is then used to find a peak representing tooth root apex as the forth control point. Bezier curve, Euclidean distance, and perspective transform are finally applied with determined four control points in curve fitting and tooth length measurement. In the experiment, comparing with the conventional PCA-based method, the average mean square error (MSE) of the line points plotted by the expert is reduced from 7.548 pixels to 4.714 pixels for tooth image type-I, whereas the average MSE value is reduced from 7.713 pixels and 7.877 pixels to 4.809 pixels and 5.253 pixels for left side and right side of tooth image type-H, respectively.

  • Temperature Sensor employing Ring Oscillator composed of Poly-Si Thin-Film Transistors: Comparison between Lightly-Doped and Offset Drain Structures Open Access

    Jun TAYA  Kazuki KOJIMA  Tomonori MUKUDA  Akihiro NAKASHIMA  Yuki SAGAWA  Tokiyoshi MATSUDA  Mutsumi KIMURA  

     
    INVITED PAPER

      Vol:
    E97-C No:11
      Page(s):
    1068-1073

    We propose a temperature sensor employing a ring oscillator composed of poly-Si thin-film transistors (TFTs). Particularly in this research, we compare temperature sensors using TFTs with lightly-doped drain structure (LDD TFTs) and TFTs with offset drain structure (offset TFTs). First, temperature dependences of transistor characteristics are compared between the LDD and offset TFTs. It is confirmed that the offset TFTs have larger temperature dependence of the on current. Next, temperature dependences of oscillation frequencies are compared between ring oscillators using the LDD and offset TFTs. It is clarified that the ring oscillator using the offset TFTs is suitable to detect the temperature. We think that this kind of temperature sensor is available as a digital device.

  • Wideband Beamforming for Multipath Signals Based on Spatial Smoothing Method

    Chengcheng LIU  Dexiu HU  Yongjun ZHAO  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E97-C No:11
      Page(s):
    1130-1133

    In this paper, the spatial smoothing (SS) method is extended to the wideband multipath case. By reordering the array input signal and the weight vector, the corresponding covariance matrix of each subarray can be constructed conveniently. Then, a novel wideband beamforming algorithm, based on the SS method (SS-WB), can be achieved by linearly constrained minimum variance (LCMV). Further improvement of the output signal-to-interference-plus-noise ratio (SINR) for SS-WB can be obtained by removing the desired signal in the observed array data with the reconstruction of covariance matrix, which is denoted as wideband beamformer based on modified SS method (MSS-WB). Both proposed algorithms can reduce the desired signal cancellation due to the super decorrelation ability of SS method and MSS-WB can lead to a significantly improved output SINR. The simulations verify their effectiveness in the multipath environment.

  • Network Virtualization Idealizations for Applications Open Access

    Glenn RICART  Akihiro NAKAO  

     
    INVITED PAPER

      Vol:
    E97-B No:11
      Page(s):
    2252-2258

    Due to limitations of today's widely-deployed commercial networks, some end-user applications are only possible through, or greatly improved by execution on virtualized networks that have been enhanced or idealized in a way which specifically supports the application. This paper describes US Ignite and the advantages provided to US Ignite end-user applications running on virtual networks which variously: (a) minimize latency, (b) minimize jitter, (c) minimize or eliminate packet drops, (d) optimize branch points for multicast packet duplication, (e) provide isolation for sensitive information flows, and/or (f) bundle network billing with application use. Examples of US Ignite applications in these categories are provided.

  • In-line Process Monitoring for Amorphous Oxide Semiconductor TFT Fabrication using Microwave-detected Photoconductivity Decay Technique Open Access

    Hiroshi GOTO  Hiroaki TAO  Shinya MORITA  Yasuyuki TAKANASHI  Aya HINO  Tomoya KISHI  Mototaka OCHI  Kazushi HAYASHI  Toshihiro KUGIMIYA  

     
    INVITED PAPER

      Vol:
    E97-C No:11
      Page(s):
    1055-1062

    We have investigated the microwave-detected photoconductivity responses from the amorphous In--Ga--Zn--O (a-IGZO) thin films. The time constant extracted by the slope of the slow part of the reflectivity signals are correlated with TFT performances. We have evaluated the influences of the sputtering conditions on the quality of a-IGZO thin film, as well as the influences of gate insulation films and annealing conditions, by comparing the TFT characteristics with the microwave photoconductivity decay ($mu$-PCD). It is concluded that the $mu$-PCD is a promising method for in-line process monitoring for the IGZO-TFTs fabrication.

  • Multi-Access Selection Algorithm Based on Joint Utility Optimization for the Fusion of Heterogeneous Wireless Networks

    Lina ZHANG  Qi ZHU  Shasha ZHAO  

     
    PAPER

      Vol:
    E97-B No:11
      Page(s):
    2269-2277

    Network selection is one of the hot issues in the fusion of heterogeneous wireless networks (HWNs). However, most of previous works only consider selecting single-access network, which wastes other available network resources, rarely take account of multi-access. To make full utilization of available coexisted networks, this paper proposes a novel multi-access selection algorithm based on joint utility optimization for users with multi-mode terminals. At first, the algorithm adopts exponential smoothing method (ESM) to get smoothed values of received signal strength (RSS). Then we obtain network joint utility function under the constraints of bandwidth and number of networks, with the consideration of trade-off between network benefit and cost. At last, Lagrange multiplier and dual optimization methods are used to maximize joint utility. Users select multiple networks according to the optimal association matrix of user and network. The simulation results show that the proposed algorithm can optimize network joint utility, improve throughput, effectively reduce vertical handoff number, and ensure Quality of Service (QoS).

  • Internet of Things (IoT): Present State and Future Prospects Open Access

    Yuichi KAWAMOTO  Hiroki NISHIYAMA  Nei KATO  Naoko YOSHIMURA  Shinichi YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E97-D No:10
      Page(s):
    2568-2575

    The recent development of communication devices and wireless network technologies continues to advance the new era of the Internet and telecommunications. The various “things”, which include not only communication devices but also every other physical object on the planet, are also going to be connected to the Internet, and controlled through wireless networks. This concept, which is referred to as the “Internet of Things (IoT)”, has attracted much attention from many researchers in recent years. The concept of IoT can be associated with multiple research areas such as body area networks, Device-to-Device (D2D) communications networks, home area networks, Unmanned Aerial Vehicle (UAV) networks, satellite networks, and so forth. Also, there are various kinds of applications created by using IoT technologies. Thus, the concept of the IoT is expected to be integrated into our society and support our daily life in the near future. In this paper, we introduce different classifications of IoT with examples of utilizing IoT technologies. In addition, as an example of a practical system using IoT, a tsunami detection system (which is composed of a satellite, sensor terminals, and an active monitoring system for real-time simultaneous utilization of the devices) is introduced. Furthermore, the requirements of the next generation systems with the IoT are delineated in the paper.

  • PaperIO: A 3D Interface towards the Internet of Embedded Paper-Craft

    Kening ZHU  Rongbo ZHU  Hideaki NII  Hooman SAMANI  Borhan (Brian) JALAEIAN  

     
    PAPER

      Vol:
    E97-D No:10
      Page(s):
    2597-2605

    As the development of Internet-of-Things is moving towards large scale industry, such as logistic and manifacturing, there is a need for end-users to get involved in the process of creating IoT easily. In this paper, we introduce PaperIO, a paper-based 3D I/O interface, in which a single piece of paper can be sensed and actuated at the same time in three dimensions using the technology of selective inductive power transmission. With this technology, paper material with multiple embedded receivers, can not only selectively receive inductive power to perform paper-computing behavior, but also work as input sensors to communicate with power transmitter wirelessly. This technology allows the creation of paper-based sensor and actuators, and forms an Interent of Embedded Paper-craft. This paper presents the detailed implementation of the system, results of the technical experiments, and a few sample applications of the presented paper-based 3D I/O interface, and finally discusses the future plan of this research.

  • SET Pulse-Width Measurement Suppressing Pulse-Width Modulation and Within-Die Process Variation Effects

    Ryo HARADA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1461-1467

    This paper presents a measurement circuit structure for capturing SET pulse-width suppressing pulse-width modulation and within-die process variation effects. For mitigating pulse-width modulation while maintaining area efficiency, the proposed circuit uses massively parallelized short inverter chains as a target circuit. Moreover, for each inverter chain on each die, pulse-width calibration is performed. In measurements, narrow SET pulses ranging 5ps to 215ps were obtained. We confirm that an overestimation of pulse-width may happen when ignoring die-to-die and within-die variation of the measurement circuit. Our evaluation results thus point out that calibration for within-die variation in addition to die-to-die variation of the measurement circuit is indispensable.

  • Interval Estimation Method for Decision Making in Wavelet-Based Software Reliability Assessment

    Xiao XIAO  Tadashi DOHI  

     
    PAPER

      Vol:
    E97-D No:5
      Page(s):
    1058-1068

    Recently, the wavelet-based estimation method has gradually been becoming popular as a new tool for software reliability assessment. The wavelet transform possesses both spatial and temporal resolution which makes the wavelet-based estimation method powerful in extracting necessary information from observed software fault data, in global and local points of view at the same time. This enables us to estimate the software reliability measures in higher accuracy. However, in the existing works, only the point estimation of the wavelet-based approach was focused, where the underlying stochastic process to describe the software-fault detection phenomena was modeled by a non-homogeneous Poisson process. In this paper, we propose an interval estimation method for the wavelet-based approach, aiming at taking account of uncertainty which was left out of consideration in point estimation. More specifically, we employ the simulation-based bootstrap method, and derive the confidence intervals of software reliability measures such as the software intensity function and the expected cumulative number of software faults. To this end, we extend the well-known thinning algorithm for the purpose of generating multiple sample data from one set of software-fault count data. The results of numerical analysis with real software fault data make it clear that, our proposal is a decision support method which enables the practitioners to do flexible decision making in software development project management.

  • Single-Grain Si Thin-Film Transistors for Monolithic 3D-ICs and Flexible Electronics Open Access

    Ryoichi ISHIHARA  Jin ZHANG  Miki TRIFUNOVIC  Jaber DERAKHSHANDEH  Negin GOLSHANI  Daniel M. R. TAJARI MOFRAD  Tao CHEN  Kees BEENAKKER  Tatsuya SHIMODA  

     
    INVITED PAPER

      Vol:
    E97-C No:4
      Page(s):
    227-237

    We review our recent achievements in monolithic 3D-ICs and flexible electronics based on single-grain Si TFTs that are fabricated inside a single-grain with a low-temperature process. Based on pulsed-laser crystallization and submicron sized cavities made in the substrate, amorphous-Si precursor film was converted into poly-Si having grains that are formed on predetermined positions. Using the method called µ-Czochralski process and LPCVD a-Si precursor film, two layers of the SG Si TFT layers with the grains having a diameter of 6µm were vertically stacked with a maximum process temperature of 550°C. Mobility for electrons and holes were 600cm2/Vs and 200cm2/Vs, respectively. As a demonstration of monolithic 3D-ICs, the two SG-TFT layers were successfully implemented into CMOS inverter, 3D 6T-SRAM and single-grain lateral PIN photo-diode with in-pixel amplifier. The SG Si TFTs were applied to flexible electronics. In this case, the a-Si precursor was prepared by doctor-blade coating of liquid-Si based on pure cyclopentasilane (CPS) on a polyimide (PI) substrate with maximum process temperature of 350°C. The µ-Czochralski process provided location-controlled Si grains with a diameter of 3µm and mobilities of 460 and 121cm2/Vs for electrons and holes, respectively, were obtained. The devices on PI were transferred to a plastic foil which can operate with a bending diameter of 6mm. Those results indicate that the SG TFTs are attractive for their use in both monolithic 3D-ICs and flexible electronics.

  • A Framework of Centroid-Based Methods for Text Categorization

    Dandan WANG  Qingcai CHEN  Xiaolong WANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:2
      Page(s):
    245-254

    Text Categorization (TC) is a task of classifying a set of documents into one or more predefined categories. Centroid-based method, a very popular TC method, aims to make classifiers simple and efficient by constructing one prototype vector for each class. It classifies a document into the class that owns the prototype vector nearest to the document. Many studies have been done on constructing prototype vectors. However, the basic philosophies of these methods are quite different from each other. It makes the comparison and selection of centroid-based TC methods very difficult. It also makes the further development of centroid-based TC methods more challenging. In this paper, based on the observation of its general procedure, the centroid-based text classification is treated as a kind of ranking task, and a unified framework for centroid-based TC methods is proposed. The goal of this unified framework is to classify a text via ranking all possible classes by document-class similarities. Prototype vectors are constructed based on various loss functions for ranking classes. Under this framework, three popular centroid-based methods: Rocchio, Hypothesis Margin Centroid and DragPushing are unified and their details are discussed. A novel centroid-based TC method called SLRCM that uses a smoothing ranking loss function is further proposed. Experiments conducted on several standard databases show that the proposed SLRCM method outperforms the compared centroid-based methods and reaches the same performance as the state-of-the-art TC methods.

101-120hit(305hit)