The search functionality is under construction.

Keyword Search Result

[Keyword] time delay(43hit)

1-20hit(43hit)

  • A New Subsample Time Delay Estimation Algorithm for LFM-Based Detection

    Cui YANG  Yalu XU  Yue YU  Gengxin NING  Xiaowu ZHU  

     
    PAPER-Ultrasonics

      Pubricized:
    2022/09/09
      Vol:
    E106-A No:3
      Page(s):
    575-581

    This paper investigated a Subsample Time delay Estimation (STE) algorithm based on the amplitude of cross-correlation function to improve the estimation accuracy. In this paper, a rough time delay estimation is applied based on traditional cross correlator, and a fine estimation is achieved by approximating the sampled cross-correlation sequence to the amplitude of the theoretical cross-correlation function for linear frequency modulation (LFM) signal. Simulation results show that the proposed algorithm outperforms existing methods and can effectively improve time delay estimation accuracy with the complexity comparable to the traditional cross-correlation method. The theoretical Cramér-Rao Bound (CRB) is derived, and simulations demonstrate that the performance of STE can approach the boundary. Eventually, four important parameters discussed in the simulation to explore the impact on Mean Squared Error (MSE).

  • Multi-Target Position and Velocity Estimation Algorithm Based on Time Delay and Doppler Shift in Passive MIMO Radar

    Yao ZHOU  Hairui YU  Wenjie XU  Siyi YAO  Li WANG  Hongshu LIAO  Wanchun LI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/05/18
      Vol:
    E105-A No:11
      Page(s):
    1466-1477

    In this paper, a passive multiple-input multiple-output (MIMO) radar system with widely separated antennas that estimates the positions and velocities of multiple moving targets by utilizing time delay (TD) and doppler shift (DS) measurements is proposed. Passive radar systems can detect targets by using multiple uncoordinated and un-synchronized illuminators and we assume that all the measurements including TD and DS have been known by a preprocessing method. In this study, the algorithm can be divided into three stages. First, based on location information within a certain range and utilizing the DBSCAN cluster algorithm we can obtain the initial position of each target. In the second stage according to the correlation between the TD measurements of each target in a specific receiver and the DSs, we can find the set of DS measurements for each target. Therefore, the initial speed estimated values can be obtained employing the least squares (LS) method. Finally, maximum likelihood (ML) estimation of a first-order Taylor expansion joint TD and DS is applied for a better solution. Extensive simulations show that the proposed algorithm has a good estimation performance and can achieve the Cramér-Rao lower bound (CRLB) under the condition of moderate measurement errors.

  • 7-Bit Multilayer True-Time Delay up to 1016ps for Wideband Phased Array Antenna Open Access

    Minyoung YOON  Sangwook NAM  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:8
      Page(s):
    622-626

    We present a seven-bit multilayer true-time delay (TTD) circuit operating from 1 to 7GHz for wideband phased array antennas. By stacking advanced substrates with low dielectric loss, the TTD with PCB process is miniaturized and has low insertion loss. The signal vias with surrounding ground vias are designed to provide impedance matching throughout the band, allowing the overall group delay to be flat. The standard deviation of the TTD for all states is below 19ps, which is 1.87% of the maximum group delay. The maximum delay is 1016ps with resolution of 8ps. The implemented TTD is 36.6×19.4mm2 and consumes 0.65mW at 3.3V supply for all the delay states. The measured input/output return loss is better than 12.1dB for the band of 1-7GHz.

  • Hyperparameter-Free Sparse Signal Reconstruction Approaches to Time Delay Estimation

    Hyung-Rae PARK  Jian LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/01/31
      Vol:
    E101-B No:8
      Page(s):
    1809-1819

    In this paper we extend hyperparameter-free sparse signal reconstruction approaches to permit the high-resolution time delay estimation of spread spectrum signals and demonstrate their feasibility in terms of both performance and computation complexity by applying them to the ISO/IEC 24730-2.1 real-time locating system (RTLS). Numerical examples show that the sparse asymptotic minimum variance (SAMV) approach outperforms other sparse algorithms and multiple signal classification (MUSIC) regardless of the signal correlation, especially in the case where the incoming signals are closely spaced within a Rayleigh resolution limit. The performance difference among the hyperparameter-free approaches decreases significantly as the signals become more widely separated. SAMV is sometimes strongly influenced by the noise correlation, but the degrading effect of the correlated noise can be mitigated through the noise-whitening process. The computation complexity of SAMV can be feasible for practical system use by setting the power update threshold and the grid size properly, and/or via parallel implementations.

  • Improved Quasi Sliding Mode Control with Adaptive Compensation for Matrix Rectifier

    Zhanhu HU  Wang HU  Zhiping WANG  

     
    LETTER-Systems and Control

      Vol:
    E100-A No:5
      Page(s):
    1240-1243

    To improve the quality of waveforms and achieve a high input power factor (IPF) for matrix rectifier, a novel quasi sliding mode control (SMC) with adaptive compensation is proposed in this letter. Applying quasi-SMC can effective obviate the disturbances of time delay and spatial lag, and SMC based on continuous function is better than discontinuous function to eliminate the chattering. Furthermore, compared with conventional compensation, an adaptive quasi-SMC compensation without any accurate detection for internal parameters is easier to be implementated, which has shown a superior advance. Theoretical analysis and experiments are carried out to validate the correctness of the novel control scheme.

  • Time Delay Estimation via Co-Prime Aliased Sparse FFT

    Bei ZHAO  Chen CHENG  Zhenguo MA  Feng YU  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:12
      Page(s):
    2566-2570

    Cross correlation is a general way to estimate time delay of arrival (TDOA), with a computational complexity of O(n log n) using fast Fourier transform. However, since only one spike is required for time delay estimation, complexity can be further reduced. Guided by Chinese Remainder Theorem (CRT), this paper presents a new approach called Co-prime Aliased Sparse FFT (CASFFT) in O(n1-1/d log n) multiplications and O(mn) additions, where m is smooth factor and d is stage number. By adjusting these parameters, it can achieve a balance between runtime and noise robustness. Furthermore, it has clear advantage in parallelism and runtime for a large range of signal-to-noise ratio (SNR) conditions. The accuracy and feasibility of this algorithm is analyzed in theory and verified by experiment.

  • Estimation of the Acoustic Time Delay of Arrival by Adaptive Eigenvalue Decomposition with a Proportionate Step-Size Control and Direct-Path Constraint

    Seokjin LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1622-1627

    Estimation of the time delay of arrival (TDOA) problem is important to acoustic source localization. The TDOA estimation problem is defined as finding the relative delay between several microphone signals for the direct sound. To estimate TDOA, the generalized cross-correlation (GCC) method is the most frequently used, but it has a disadvantage in terms of reverberant environments. In order to overcome this problem, the adaptive eigenvalue decomposition (AED) method has been developed, which estimates the room transfer function and finds the direct-path delay. However, the algorithm does not take into account the fact that the room transfer function is a sparse channel, and so sometimes the estimated transfer function is too dense, resulting in failure to exact direct-path and delay. In this paper, an enhanced AED algorithm that makes use of a proportionate step-size control and a direct-path constraint is proposed instead of a constant step size and the L2-norm constraint. The simulation results show that the proposed algorithm has enhanced performance as compared to both the conventional AED method and the phase-transform (PHAT) algorithm.

  • A Robust Algorithm for Extracting Signals with Temporal Structure

    Yibing LI  Wei NIE  Fang YE  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/15
      Vol:
    E99-D No:6
      Page(s):
    1671-1677

    The separation of signals with temporal structure from mixed sources is a challenging problem in signal processing. For this problem, blind source extraction (BSE) is more suitable than blind source separation (BSS) because it has lower computation cost. Nowadays many BSE algorithms can be used to extract signals with temporal structure. However, some of them are not robust because they are too dependent on the estimation precision of time delay; some others need to choose parameters before extracting, which means that arbitrariness can't be avoided. In order to solve the above problems, we propose a robust source extraction algorithm whose performance doesn't rely on the choice of parameters. The algorithm is realized by maximizing the objective function that we develop based on the non-Gaussianity and the temporal structure of source signals. Furthermore, we analyze the stability of the algorithm. Simulation results show that the algorithm can extract the desired signal from large numbers of observed sensor signals and is very robust to error in the estimation of time delay.

  • A Novel Time Delay Estimation Interpolation Algorithm Based on Second-Order Cone Programming

    Zhixin LIU  Dexiu HU  Yongjun ZHAO  Chengcheng LIU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:6
      Page(s):
    1311-1317

    Considering the obvious bias of the traditional interpolation method, a novel time delay estimation (TDE) interpolation method with sub-sample accuracy is presented in this paper. The proposed method uses a generalized extended approximation method to obtain the objection function. Then the optimized interpolation curve is generated by Second-order Cone programming (SOCP). Finally the optimal TDE can be obtained by interpolation curve. The delay estimate of proposed method is not forced to lie on discrete samples and the sample points need not to be on the interpolation curve. In the condition of the acceptable computation complexity, computer simulation results clearly indicate that the proposed method is less biased and outperforms the other interpolation algorithms in terms of estimation accuracy.

  • Rejection of the Position Dependent Disturbance Torque of Motor System with Slowly Varying Parameters and Time Delays

    Daesung JUNG  Youngjun YOO  Sangchul WON  

     
    PAPER-Systems and Control

      Vol:
    E98-A No:7
      Page(s):
    1494-1503

    This paper proposes an updating state dependent disturbance observer (USDDOB) to reject position dependent disturbances when parameters vary slowly, and input and output are time-delayed. To reject the effects of resultant slowly-varying position dependent disturbances, the USDDOB uses the control method of the state dependent disturbance observer (SDDOB) and time-invariance approximation. The USDDOB and a main proportional integral (PI) controller constitute a robust controller. Simulations and experiments using a 1-degree-of-freedom (1-DOF) tilted planar robot show the effectiveness of the proposed method.

  • Multipath Time Delay Estimation Based on Gibbs Sampling under Incoherent Reception Environment

    Sen ZHONG  Wei XIA  Zishu HE  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:6
      Page(s):
    1300-1304

    In the traditional time delay estimation methods, it is usually implicitly assumed that the observed signals are either only direct path propagate or coherently received. In practice, the multipath propagation and incoherent reception always exist simultaneously. In response to this situation, the joint maximum likelihood (ML) estimation of multipath delays and system error is proposed, and the estimation of the number of multipath is considered as well for the specific incoherent signal model. Furthermore, an algorithm based Gibbs sampling is developed to solve the multi-dimensional nonlinear ML estimation. The efficiency of the proposed estimator is demonstrated by simulation results.

  • Resolution and Parameter Estimation of Non-ideally Sampled Pulse Signals

    Bo WU  Yan WANG  Xiuying CAO  Pengcheng ZHU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:3
      Page(s):
    647-654

    Attenuated and delayed versions of the pulse signal overlap in multipath propagation. Previous algorithms can resolve them only if signal sampling is ideal, but fail to resolve two counterparts with non-ideal sampling. In this paper, we propose a novel method which can resolve the general types of non-ideally sampled pulse signals in the time domain via Taylor Series Expansion (TSE) and estimate multipath signals' precise time delays and amplitudes. In combination with the CLEAN algorithm, the overlapped pulse signal parameters are estimated one by one through an iteration method. Simulation results verify the effectiveness of the proposed method.

  • Global Asymptotic Stability of FAST TCP in the Presence of Time-Varying Network Delay and Cross Traffic

    Joon-Young CHOI  Hongju KIM  Soonman KWON  

     
    PAPER-Internet

      Vol:
    E96-B No:3
      Page(s):
    802-810

    We address the global asymptotic stability of FAST TCP, especially considering cross traffics, time-varying network feedback delay, and queuing delay dynamics at link. Exploiting the inherent dynamic property of FAST TCP, we construct two sequences that represent the lower and upper bound variations of the congestion window in time. By showing that the sequences converge to the equilibrium point of the congestion window, we establish that FAST TCP in itself is globally asymptotically stable without any specific conditions on the tuning parameter α or the update gain γ.

  • Minimizing False Peak Errors in Generalized Cross-Correlation Time Delay Estimation Using Subsample Time Delay Estimation

    SooHwan CHOI  DooSeop EOM  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:1
      Page(s):
    304-311

    The Generalized cross-correlation (GCC) method is most commonly used for time delay estimation (TDE). However, the GCC method can result in false peak errors (FPEs) especially at a low signal to noise ratio (SNR). These FPEs significantly degrade TDE, since the estimation error, which is the difference between a true time delay and an estimated time delay, is larger than at least one sampling period. This paper introduces an algorithm that estimates two peaks for two cross-correlation functions using three types of signals such as a reference signal, a delayed signal, and a delayed signal with an additional time delay of half a sampling period. A peak selection algorithm is also proposed in order to identify which peak is closer to the true time delay using subsample TDE methods. This paper presents simulations that compare the algorithms' performance for varying amounts of noise and delay. The proposed algorithms can be seen to display better performance, in terms of the probability of the integer TDE errors, as well as the mean and standard deviation of absolute values of the time delay estimation errors.

  • Global Exponential Stability of FAST TCP with Heterogeneous Time-Varying Delays

    Joon-Young CHOI  Kyungmo KOO  Jin Soo LEE  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E94-B No:7
      Page(s):
    1868-1874

    We address the stability property of the FAST TCP congestion control algorithm. Based on a continuous-time dynamic model of the FAST TCP network, we establish that FAST TCP in itself is globally exponentially stable without any specific conditions on the congestion control parameter or the update gain. Simulation results demonstrate the validity of the global exponential stability of FAST TCP.

  • Design of a Smart CMOS Readout Circuit for Panoramic X-Ray Time Delay and Integration Arrays

    Chul Bum KIM  Doo Hyung WOO  Byung Hyuk KIM  Hee Chul LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:7
      Page(s):
    1212-1219

    This paper presents a novel charge transfer CMOS readout circuit for an X-ray time delay and integration (TDI) array with a depth of 64. In this study, a charge transfer readout scheme based on CMOS technology is proposed to sum 64 stages of the TDI signal. In addition, a dead pixel elimination circuit is integrated within a chip, thus resolving the weakness of TDI arrays related to defective pixels. The proposed method is a novel CMOS solution for large depth TDI arrays. Thus, a high signal-to-noise ratio (SNR) can be acquired due to the increased TDI depth. The readout chip was fabricated with a 0.6 µm standard CMOS process for a 15064 CdTe X-ray detector array. The readout circuit was found to effectively increase the charge storage capacity up to 1.6108 electrons, providing an improved SNR by a factor of approximately 8. The measured equivalent noise charge resulting from the readout circuit was 1.68104 electrons, a negligible value compared to the shot noise from the detector.

  • Performance Optimization of Time Delay Estimation Based on Chirp Spread Spectrum Using ESPRIT

    Seong-Hyun JANG  Yeong-Sam KIM  Sang-Hoon YOON  Jong-Wha CHONG  

     
    LETTER-Sensing

      Vol:
    E94-B No:2
      Page(s):
    607-609

    In this letter, we analyze the effect of the size of observed data on the performance of time delay estimation (TDE) in the chirp spread spectrum (CSS) system. By adjusting the size of observed data, we reduce the effect of DC offsets, which would otherwise degrade the performance of TDE based on CSS, and we optimize the performance of TDE in CSS system. Finally, we derive the optimal size of observed data of TDE in CSS system.

  • Analytical Study on Performance Improvement of Service Availability in Heterogeneous Radio Networks

    Kanshiro KASHIKI  Tadayuki FUKUHARA  Akira YAMAGUCHI  Toshinori SUZUKI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3302-3310

    From the viewpoint of service availability, which is an important evaluation factor in communication quality, we analytically study the performance improvement of heterogeneous radio networks that cooperatively select one system from among multiple communication systems. It is supposed herein that the heterogeneous network selects one system with the larger throughput or with the smaller time delay. To this end, we firstly derive analytical methods using the probability density function of the performance characteristics of the communication systems consisting of the heterogeneous radio network. The analytical method described here is comparatively general and enables the handling of cases where complete cooperation can and cannot be achieved in the heterogeneous network. As for the performance characteristics, we conduct an experiment using the wireless LAN to establish the probability distribution models of the throughput and time delay in the communication system. Using the analytical method and the experimental model obtained, we calculate the performance improvement by cooperative operation in the heterogeneous network. The equational expression to obtain the theoretical performance improvement limit is also investigated through the analytical equations.

  • Learning Rule for Time Delay in Fuzzy Cognitive Maps

    In Keun LEE  Soon Hak KWON  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E93-D No:11
      Page(s):
    3153-3157

    Time is considered as an important factor in modeling and operation of dynamic systems. However, few studies have considered time factor in modeling and inference of fuzzy cognitive maps (FCMs), besides, no studies have dealt with time delay in learning of FCMs. Therefore, we propose a learning rule for temporal FCMs involving post- and pre-delay time by extending Oja's learning rule. We show the effectiveness of the proposed rule through simulations which solve a time-delayed chemical plant control problem.

  • Time Delay Estimator Based on Frequency Estimation Approach

    Kenneth Wing Kin LUI  Hing Cheung SO  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1248-1250

    In this Letter, the problem of estimating the time-difference-of-arrival between signals received at two spatially separated sensors is addressed. By taking discrete Fourier transform of the sensor outputs, time delay estimation corresponds to finding the frequency of a noisy sinusoid with time-varying amplitude. The generalized weighted linear predictor is utilized to estimate the time delay and it is shown that its estimation accuracy attains Cramér-Rao lower bound.

1-20hit(43hit)