The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

2721-2740hit(3578hit)

  • An Atomic Micropayment System for a Mobile Computing Environment

    Sangjin KIM  Heekuck OH  

     
    PAPER-Applications of Information Security Techniques

      Vol:
    E84-D No:6
      Page(s):
    709-716

    In a mobile computing environment, the characteristics of wireless communication and host mobility are important considerations in providing an efficient payment service. Currently, most payment systems were not intended for use in a mobile environment, and as such they inherently possess some inefficient properties. In this paper, we propose a new micropayment system (AMPS), designed for use in a mobile computing environment. AMPS reduces the computational load of mobile hosts by directing operations normally performed by the client to the static portion of the network. With AMPS, a client's request for goods goes to a TTP server, called the AMPS server, using only one message. The client can also be disconnected while the AMPS server deals with the merchant, reducing communication costs and power consumption. User privacy is protected by hiding the details of the payment to the AMPS server. The AMPS server can also provide client anonymity to merchants. Another advantage of AMPS is the provision of transaction atomicity by checking goods and money before forwarding to clients or merchants, and preserving all necessary information for any possible future disputes.

  • A Study on Active Collision Avoidance System for the Road Vehicle

    Joo-Han KIM  Zeungnam BIEN  

     
    PAPER-Artificial Intelligence, Cognitive Science

      Vol:
    E84-D No:6
      Page(s):
    717-726

    A great deal of effort has been concentrated on the longitudinal control for the collision avoidance of moving vehicles. In an emergency as well as in a normal situation, however, the steering control can be a very effective alternative as observed in the practice of manual evasive driving. In the reported methods of steering control, it is found that the dynamic motions of the neighboring vehicles are often ignored, which may result in some danger of 2nd collision. Therefore, it is necessary to assess the surrounding traffic situation to prevent 2nd collision that can occur just after escaping from the 1st collision situation. In this paper, we tackle the collision avoidance problem when steering actuation control is allowed in consideration of the dynamic motion of the neighboring vehicles. Specifically, a hierarchical control scheme is suggested as a feasible solution, and the proposed system is verified via simulation using a software simulator called DevACAS (DEVeolper of Active Collision Avoidance System), which we have developed.

  • Effectiveness and Issues of Rerouting Algorithms for QoS Networks

    Takeshi IKENAGA  Kenji KAWAHARA  Yuji OIE  

     
    PAPER

      Vol:
    E84-B No:6
      Page(s):
    1553-1560

    In QoS networks, routing algorithms for QoS traffic have to provide the transmission path satisfying its QoS requirement while achieving high utilization of network resources. Therefore, server-based QoS routing algorithms would be more effective than distributed routing ones which are very common on the Internet. Furthermore, we believe that rerouting function enhances the advantage of their algorithms in which an already accepted flow with established path is replaced on some other path in order to accept newly arriving transmission request if it can not be accepted without doing so. Thus in this paper, we will propose a rerouting algorithm with the server-based QoS routing and evaluate its performance in terms of the blocking probability by computer simulation. In addition, we will investigate the impact of the amount of traffic with high-priority on the performance in some network topologies. Through some simulation results, we also discuss some issues arising in improving the effectiveness of rerouting.

  • Adaptive Dispersion Compensation for 40 Gbit/s RZ Transmission by Using Bragg Gratings

    Takashi SUGIHARA  Kazuyuki ISHIDA  Kenkichi SHIMOMURA  Katsuhiro SHIMIZU  Yukio KOBAYASHI  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    527-532

    Using the chirped grating with temperature control, we demonstrated the adaptive dispersion compensation at 40 Gbit/s RZ transmission. The simple monitoring of the 40 GHz frequency component enables us to automatic control of the adaptive dispersion compensator.

  • Asymmetric Transmission Spectrum of a Long-Period Fiber Grating and Its Removal Using a Beam Scanning Method

    Tae-Jung EOM  Young-Jae KIM  Youngjoo CHUNG  Won-Taek HAN  Un-Chul PAEK  Byeong Ha LEE  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1241-1246

    In an ideal fiber grating having a uniform refractive index modulation, the reflection or the transmission spectrum is symmetric with equal amount of side lobes on both sides of the resonant wavelength of the fiber grating. It is observed that a long-period fiber grating made by a non-uniform UV laser beam through a uniform amplitude mask has an asymmetric transmission spectrum. The asymmetric characteristic is explained with Mach-Zehnder effect in the long-period fiber grating. The non-uniform UV laser beam makes also a non-uniform index modulation along the fiber core. Therefore, a beam coupled to a cladding mode at a section of the grating can be re-coupled to the core mode after passing a certain distance. The re-coupled beam makes Mach-Zehnder-like interference with the un-coupled core mode. However, it is presented that the asymmetric phenomenon can be overcome by scanning the UV laser beam along the fiber over the mask. The beam scanning method is able to suffer the same fluence of the UV laser beam on the fiber. Finally, a linearly chirped long-period fiber grating was made using the non-uniform UV laser beam. Due to the asymmetricity the chirping effect was not clearly observed. It is also presented that the beam scanning method could remove the asymmetric problem and recover the typical spectrum of the linearly chirped fiber grating.

  • New Planar Lightwave Circuit (PLC) Platform Eliminating Si Terraces and Its Application to Opto-electronic Hybrid Integrated Modules

    Takashi YAMADA  Toshikazu HASHIMOTO  Takaharu OHYAMA  Yuji AKAHORI  Akimasa KANEKO  Kazutoshi KATO  Ryouichi KASAHARA  Mikitaka ITO  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1311-1318

    We have developed a new planar lightwave circuit (PLC) platform eliminating Si terraces for hybrid integrated optical modules. This PLC platform has the advantage of a lower fabrication cost than the conventional PLC platform with an Si terrace, because it does not require fabrication processes such as Si terrace forming and mechanical polishing. Using our new PLC platform structure, we fabricated a transceiver for optical access networks and an 8-channel multi-channel photoreceiver for wavelength division multiplexing (WDM) interconnection systems.

  • A Novel Optical Add/Drop Multiplexer Utilizing Free Spectral Range Periodicity of Arrayed Waveguide Grating Multiplexer

    Masahide MIYACHI  Shigeru OHSHIMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    579-584

    We propose a novel optical add/drop multiplexer (OADM) utilizing free spectral range (FSR) periodicity of an arrayed-waveguide multiplexer (AWG). In this OADM, wavelength-division multiplex (WDM) signal is multiplexed and/or de-multiplexed in two steps. Power penalty due to coherent crosstalk is drastically reduced compared with that of conventional OADM where AWG multiplexers are opposite to each other. The calculated power penalty due to the coherent crosstalk is about 0.7 dB after the 16 OADMs in the case of 128 wavelengths. It was confirmed through a computer simulation that more than one hundred channels at 10 Gbps data rate could be accommodated in an OADM network with 16 nodes. These results show that the OADM network with over 1 Tbps capacity and 16 nodes could be constructed.

  • High-Performance VCSELs for Optical Data Links

    Rainer MICHALZIK  Karl Joachim EBELING  Max KICHERER  Felix MEDERER  Roger KING  Heiko UNOLD  Roland JAGER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1255-1264

    The present paper discusses several promising application areas for optical data links based on high-performance vertical-cavity surface-emitting laser diodes (VCSELs). Both 850 and 980 nm emission wavelength devices realized in the GaAs-AlGaAs or InGaAs-AlGaAs material systems are considered. We show data transmission results of 10 Gb/s signals at 830 nm wavelength over a new high-bandwidth multimode silica fiber of up to 1.6 km length. The same fiber type is employed to demonstrate the first 40 Gb/s transport over 300 m distance by means of a 4-channel coarse wavelength-division multiplexing approach. A first 1 10 linear VCSEL array capable of 10 Gb/s per channel operation is presented for use in next generation parallel optical modules. To improve the singlemode emission characteristics for output power in the 5 mW range we introduce a new device concept incorporating a long monolithic cavity. For low-cost short-distance data links we investigate graded-index polymer optical fibers and report on up to 9 Gb/s transmission over a length of 100 m. Polymer waveguides are also used in an optical layer of a hybrid electrical-optical printed circuit board. Transmitted 10 Gb/s optical data over a prototype board show the potential of this new technology. Finally we present two-dimensional VCSEL arrays for highly parallel data transport on a CMOS chip level. Both 980 and 850 nm bottom emitting devices with modulation capabilities up to 12.5 Gb/s are discussed.

  • All-Optical Signal Processing Using Highly-Nonlinear Optical Fibers

    Shigeki WATANABE  Fumio FUTAMI  

     
    INVITED PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    553-563

    The effectiveness and possible applications of all-optical signal processing using highly-nonlinear dispersion-shifted fibers (HNL-DSFs) are described. Transparent and simultaneous processings of multi-channels WDM signal are key features of optical fiber processors. Simultaneous wavelength conversion of 3210 Gb/s WDM signal by four-wave mixing, all-optical 3R regeneration of 220 Gb/s WDM signal using nonlinear loop mirrors, and simultaneous recovery of 2020 GHz WDM optical clocks by supercontinuum were successfully demonstrated using HNL-DSFs, and possible applications of ultra-fast and multi-channel processing in future photonic networks are discussed.

  • On the Traffic-Distribution Characteristics of Parallel Switching Architectures

    Hyoung-Il LEE  Han-You JEONG  Seung-Woo SEO  

     
    PAPER-Network

      Vol:
    E84-B No:5
      Page(s):
    1375-1387

    In this paper, we investigate the performance characteristics of parallel switching architectures constructed by a stack of multistage switching networks. We first find that the performances of the previously proposed parallel switching architectures are much worse than the expected ones from analytic models which are based on the assumption that traffic is uniformly distributed at each stage of a switching network. We show that this phenomenon is closely related to a traffic-distribution capability of a parallel switching system and has a large influence on the performance. From these results, we then propose an architectural solution based on the Generalized Shuffle Network (GSN) and analyze its performance by proposing a new iterative analysis method. The proposed architecture uses self-routing and deflection routing, and inherently has a traffic-distribution capability to improve switch performances such as cell loss and delay in a cost-effective manner. From the comparison of simulation and analysis results, it is shown that the developed models are quite accurate in predicting the performance of a new parallel switching system.

  • State Dependent Multicast Routing for Single Rate Loss Networks

    Chi-Chung CHEUNG  Danny H. K. TSANG  Sanjay GUPTA  

     
    PAPER-Network

      Vol:
    E84-B No:5
      Page(s):
    1388-1396

    We investigate a state dependent multicast routing scheme, called Least Load Multicast Routing (LLMR), for single rate loss networks. The algorithm is based on Least Load Routing (LLR) concept and the approach is to select the least loaded links for establishing connections. An analytical model for LLMR is developed. The accuracy of the analytical model is compared with the simulation results and is found to be very good. We also develop a simplified analytical model for fully symmetrical networks, which is also verified by comparing with simulation results.

  • A Novel Optical Add/Drop Multiplexer Utilizing Free Spectral Range Periodicity of Arrayed Waveguide Grating Multiplexer

    Masahide MIYACHI  Shigeru OHSHIMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1205-1210

    We propose a novel optical add/drop multiplexer (OADM) utilizing free spectral range (FSR) periodicity of an arrayed-waveguide multiplexer (AWG). In this OADM, wavelength-division multiplex (WDM) signal is multiplexed and/or de-multiplexed in two steps. Power penalty due to coherent crosstalk is drastically reduced compared with that of conventional OADM where AWG multiplexers are opposite to each other. The calculated power penalty due to the coherent crosstalk is about 0.7 dB after the 16 OADMs in the case of 128 wavelengths. It was confirmed through a computer simulation that more than one hundred channels at 10 Gbps data rate could be accommodated in an OADM network with 16 nodes. These results show that the OADM network with over 1 Tbps capacity and 16 nodes could be constructed.

  • New Planar Lightwave Circuit (PLC) Platform Eliminating Si Terraces and Its Application to Opto-electronic Hybrid Integrated Modules

    Takashi YAMADA  Toshikazu HASHIMOTO  Takaharu OHYAMA  Yuji AKAHORI  Akimasa KANEKO  Kazutoshi KATO  Ryouichi KASAHARA  Mikitaka ITO  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    685-692

    We have developed a new planar lightwave circuit (PLC) platform eliminating Si terraces for hybrid integrated optical modules. This PLC platform has the advantage of a lower fabrication cost than the conventional PLC platform with an Si terrace, because it does not require fabrication processes such as Si terrace forming and mechanical polishing. Using our new PLC platform structure, we fabricated a transceiver for optical access networks and an 8-channel multi-channel photoreceiver for wavelength division multiplexing (WDM) interconnection systems.

  • A Multi-Beam Combining Scheme for DS-CDMA Systems Using Weighting Factor Based on Interference Level

    Hiroyasu SANO  Nobuhisa KATAOKA  Hiroshi KUBO  Makoto MIYAKE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:5
      Page(s):
    1328-1336

    This paper focuses on a multi-beam combining scheme for DS-CDMA systems, which has RAKE combiners in multiple overlapped beams, in order to increase the reverse link capacity of DS-CDMA. This scheme is a very attractive technique because the maximal ratio combining (MRC) is carried out in space and time domains. However, in a practical situation, since the terminals in own sector are not uniformly located, the interference levels in respective beams are different. Therefore, receivers at the base station do not achieve ideal combining. This paper proposes a multi-beam combining scheme for DS-CDMA systems using weighting factor based on interference level of each beam. A fast closed loop transmission power control (TPC) scheme for the multi-beam combining system is also proposed. It is confirmed by computer simulation that the proposed scheme has excellent performance in the reverse link even if terminals in own sector are not uniformly located.

  • Asymmetric Transmission Spectrum of a Long-Period Fiber Grating and Its Removal Using a Beam Scanning Method

    Tae-Jung EOM  Young-Jae KIM  Youngjoo CHUNG  Won-Taek HAN  Un-Chul PAEK  Byeong Ha LEE  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    615-620

    In an ideal fiber grating having a uniform refractive index modulation, the reflection or the transmission spectrum is symmetric with equal amount of side lobes on both sides of the resonant wavelength of the fiber grating. It is observed that a long-period fiber grating made by a non-uniform UV laser beam through a uniform amplitude mask has an asymmetric transmission spectrum. The asymmetric characteristic is explained with Mach-Zehnder effect in the long-period fiber grating. The non-uniform UV laser beam makes also a non-uniform index modulation along the fiber core. Therefore, a beam coupled to a cladding mode at a section of the grating can be re-coupled to the core mode after passing a certain distance. The re-coupled beam makes Mach-Zehnder-like interference with the un-coupled core mode. However, it is presented that the asymmetric phenomenon can be overcome by scanning the UV laser beam along the fiber over the mask. The beam scanning method is able to suffer the same fluence of the UV laser beam on the fiber. Finally, a linearly chirped long-period fiber grating was made using the non-uniform UV laser beam. Due to the asymmetricity the chirping effect was not clearly observed. It is also presented that the beam scanning method could remove the asymmetric problem and recover the typical spectrum of the linearly chirped fiber grating.

  • Adaptive Dispersion Compensation for 40 Gbit/s RZ Transmission by Using Bragg Gratings

    Takashi SUGIHARA  Kazuyuki ISHIDA  Kenkichi SHIMOMURA  Katsuhiro SHIMIZU  Yukio KOBAYASHI  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1153-1158

    Using the chirped grating with temperature control, we demonstrated the adaptive dispersion compensation at 40 Gbit/s RZ transmission. The simple monitoring of the 40 GHz frequency component enables us to automatic control of the adaptive dispersion compensator.

  • Controllable Transmission Characteristics of Multi-Channel Long Period Fiber Gratings

    Young-Geun HAN  Byeong Ha LEE  Won-Taek HAN  Un-Chul PAEK  Youngjoo CHUNG  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1236-1240

    We will present the theoretical analysis of and experimental measurements on the transmission characteristics of multi-channel long period fiber gratings in terms of the physical parameters like the separation distance, grating length and number of gratings. These parameters can be used to control the spectral channel spacing, number of channels, loss peak depth, and channel bandwidth of multi-channel long period fiber gratings.

  • Analytic Solution for Cascaded Long-Period Fiber Gratings

    Byeong Ha LEE  Young-Jae KIM  Youngjoo CHUNG  Won-Taek HAN  Un-Chul PAEK  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    621-628

    The analytic expression for the transmission spectrum of cascaded long-period fiber gratings is presented in a closed form. When several identical gratings are cascaded in-series with a regular distance, the transmission spectrum is revealed to have a series of regularly spaced peaks, suitable for multi-channel filters. The analytic solution is obtained by diagonalizing the transfer matrix of each grating unit that is composed of a single grating and a grating-free region between adjacent gratings. The spectrum of the device is simply described with the number of cascaded gratings and a single parameter that has the information of the phase difference between the modes. With the derived equation, the spectral behaviors of the proposed device are investigated. The intensity of each peak can be controlled by adjusting the strength of a single grating. The separation between adjacent gratings determines the spacing between the peaks. The finesse of the peaks can be increased by cascading more gratings. The derived analytic results are compared with the known results of paired gratings and phase-shifted gratings.

  • Managed IP Multicast Platform Suitable for Business Usage

    Kenichi MATSUI  Masaki KANEDA  Hikaru TAKENAKA  Hiroyuki ICHIKAWA  

     
    PAPER

      Vol:
    E84-D No:5
      Page(s):
    560-569

    This paper proposes a managed IP multicast platform that enables IP multicast services to be used for business. Nowadays, many business applications have switched from traditional network platforms to the IP platform. Among these applications, one-to-many or many-to -many types of applications are especially essential to business users. These applications may use IP Multicasting for transmitting data to many users. However, for business applications, it is difficult to use the present IP Multicast services, because they lack many requirements for business usage. The requirements are address management, authentication, time management, and guaranteed throughput. To satisfy the business users, we made the design of a managed IP multicast platform that will meet these requirements. Our platform, which separates the routing control layer and the packet forwarding layer, is called GMN-CL (Connection Technologies for Global Mega-media Network). The routing control layer manages routing information and controls network routing centrally, so it can understand the whole network situation and perform efficient routing. The packet forwarding layer can concentrate completely on forwarding, so the forwarding speed and copying speed is higher than when using routers. We have implemented our design of a managed IP multicast platform over GMN-CL. This paper reports the system design, implementation, and evaluation.

  • Controllable Transmission Characteristics of Multi-Channel Long Period Fiber Gratings

    Young-Geun HAN  Byeong Ha LEE  Won-Taek HAN  Un-Chul PAEK  Youngjoo CHUNG  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    610-614

    We will present the theoretical analysis of and experimental measurements on the transmission characteristics of multi-channel long period fiber gratings in terms of the physical parameters like the separation distance, grating length and number of gratings. These parameters can be used to control the spectral channel spacing, number of channels, loss peak depth, and channel bandwidth of multi-channel long period fiber gratings.

2721-2740hit(3578hit)