The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

2861-2880hit(3578hit)

  • End-to-End Call Admission Control in Service Guaranteed Networks

    Yung-Chung WANG  Chung-Chin LU  

     
    PAPER-Network

      Vol:
    E83-B No:4
      Page(s):
    791-802

    A per-connection end-to-end call admission control (CAC) problem is solved in this paper to allocate network resources to an input session to guarantee its quality of service (Qos) requirements. In conjunction with the solution of the CAC problem, a traffic descriptor is proposed to describe the loss rate and the delay bound Qos requirements of the connection to be set up as well as the statistical characteristics of the associated input traffic which is modeled as a linear mean function plus a (zero-mean) fractional Brownian motion. The information in the traffic descriptor is sufficient to determine the allocation of channel bandwidth and buffer space to the input traffic in a network which employs leaky bucket shapers and scheduling algorithms to guarantee the Qos requirements. The CAC problem is solved by an iterative algorithm of which there are two stages in each iteration: one is responsible for the search of a candidate end-to-end routing path and the other for the verification of the legitimacy of this candidate path to meet the Qos requirements and for the allocation of resources in such a legitimate path.

  • OTA-C Based BIST Structure for Analog Circuits

    Cheng-Chung HSU  Wu-Shiung FENG  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E83-A No:4
      Page(s):
    771-773

    In this letter, a novel built-in self-test (BIST) structure based on operational transconductance amplifiers and grounded capacitors (OTA-Cs) for the fault diagnosis of analog circuits is proposed. The proposed analog BIST structure, namely ABIST, can be used to increase the number of test points, sampling and controlling of all test points with voltage data, and making less time for test signal observable. Experimental measurements have been made to verify that the proposed ABIST structure is effective.

  • Cubic GaN Light Emitting Diode Grown by Metalorganic Vapor-Phase Epitaxy

    Hidenao TANAKA  Atsushi NAKADAIRA  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    585-590

    We studied Si and Mg doping characteristics in cubic GaN and fabricated a light emitting diode of cubic GaN on a GaAs substrate by metalorganic vapor-phase epitaxy. The diode structure consisted of undoped and Mg-doped GaN stacking layers deposited on Si-doped GaN and AlGaN layers. The electron-beam-induced-current signal and current injection characteristics of this diode structure were measured. There was a peak at the interface between the Mg-doped and undoped GaN in the electron-beam-induced-current signal. This shows successful growth of the p-n junction. Light emitting operation was achieved by currents injected through the conducting GaAs substrate of this diode at room temperature. We observed electroluminescence below the bandgap energy of cubic GaN with a peak at 2.6 eV.

  • Distributed Strain Monitoring with Arrays of Fiber Bragg Grating Sensors on an In-Construction Steel Box-Girder Bridge

    Sandeep VOHRA  Gregg JOHNSON  Michael TODD  Bruce DANVER  Bryan ALTHOUSE  

     
    INVITED PAPER-System Applications and Field Tests

      Vol:
    E83-C No:3
      Page(s):
    454-461

    This paper describes the implementation of a Bragg grating-based strain-monitoring system on the Viaduc des Vaux bridge during its construction in 1997 and 1998. The bridge was constructed in a cantilevered, push/pull incremental launching method, and data obtained from two tests were shown to reveal interesting features of the box-girder strain response during the push and pull phases, particularly with regard to limit loads and local buckling. When appropriate, data were compared to data obtained from conventional resistive strain gages and from simple analytical models.

  • Long-Period Gratings Fabrication Using Plano-Convex Microlens Array

    Shun Yee LIU  Wai Sing MAN  Hwayaw TAM  Bai-Ou GUAN  Muhtesem Suleyman DEMOKAN  

     
    PAPER-Passive and Active Devices for Photonic Sensing

      Vol:
    E83-C No:3
      Page(s):
    444-447

    A low-cost technique using commercial UV grade silica fibers to construct microlens array that is suitable for mass-production of long-period gratings is reported. The growth rate of gratings fabricated using these arrays is much faster than the conventional amplitude masks. Our previous work had shown that this technique was 400% more efficient than the metal mask technique. Further improvement of this grating writing technique using plano-convex microlens array is reported in this paper. Under the same writing conditions, long-period gratings with absorption peaks of 1.5 dB and 17 dB were fabricated by using a microlens array and a plano-convex microlens array, respectively.

  • Distributed and Multiplexed Fibre Grating Sensors, Including Discussion of Problem Areas

    John P. DAKIN  Mark VOLANTHEN  

     
    INVITED PAPER-Multiplexing and Sensor Networking

      Vol:
    E83-C No:3
      Page(s):
    391-399

    A short review of distributed and multiplexed sensor technology, based on fibre gratings, is given. This is followed by details of more specific work in this area at the University of Southampton, particularly grating fabrication, distributed and multiplexed addressing and important practical aspects such as temperature and strain discrimination. The paper concludes with a short discussion of the problems that must be avoided in order to construct viable systems for engineering requirements.

  • Characteristics of Fiber Bragg Grating Hydrophone

    Nobuaki TAKAHASHI  Kazuto YOSHIMURA  Sumio TAKAHASHI  Kazuo IMAMURA  

     
    PAPER-Physical and Mechanical Sensors

      Vol:
    E83-C No:3
      Page(s):
    275-281

    Characteristics of an FBG hydrophone are described under various conditions. The developed FBG hydrophone detects an acoustic field in water with good performances: linear response,high sensitivity,high stability,wide dynamic range as large as 90 dB and wide operation frequency range from a few kHz to a few MHz. A WDM FBG hydrophone consisting of two FBGs in serial connection can detect simultaneously amplitudes and phases of acoustic fields at different points,which in turn allows a directive measurement of an acoustic field in water.

  • Virtual-Cost-Based Algorithm for Dynamic Multicast Routing in Satellite-Terrestrial Networks

    Takuya ASAKA  Takumi MIYOSHI  Yoshiaki TANAKA  

     
    PAPER-Signaling System and Communication Protocol

      Vol:
    E83-B No:3
      Page(s):
    680-689

    Satellite-terrestrial (ST) networks, in which many nodes are interconnected by both satellite and terrestrial networks, can efficiently support multicast services. This is because satellite broadcasting is suitable for a large multicast group and a terrestrial network is suitable for a small multicast group. An ST network requires a multicast routing algorithm that can select the appropriate satellite and terrestrial routes. Conventional dynamic routing algorithms for terrestrial networks cannot construct an efficient multicast routing tree because they basically select a less-expensive route when a node is added. We have developed a dynamic routing algorithm, a virtual-cost-based algorithm, for ST networks that selects the route to use according to the multicast group size when a node is added to the group. Simulation showed that the proposed algorithm is advantageous when nodes are added to or removed from the multicast group during steady-state simulation.

  • Phase Plate Process for Advanced Fiber Bragg Gratings Devices Manufacturing

    Christophe MARTINEZ  Paul JOUGLA  Sylvain MAGNE  Pierre FERDINAND  

     
    PAPER-Passive and Active Devices for Photonic Sensing

      Vol:
    E83-C No:3
      Page(s):
    435-439

    A new manufacturing process for advanced Fiber Bragg Gratings which uses phase plates is described. Its high versatility allows to achieve many type of filters in optical fibers (phase-shifted, apodised, Fabry-Perot).

  • Optical Fiber Sensors for Permanent Downwell Monitoring Applications in the Oil and Gas Industry

    Alan D. KERSEY  

     
    INVITED PAPER-Distributed Sensing

      Vol:
    E83-C No:3
      Page(s):
    400-404

    This paper reviews the use of fiber optic sensors for downhole monitoring in the oil and gas industry. Due to their multiplexing capabilities and versatility, the use of Bragg grating sensors appears to be particularly suited for this application. Several types of transducer have been developed, each of which can be addressed along a single (common) optical fiber in the well and read-out using a common surface instrumentation system.

  • On the Unwanted Radiated Fields due to the Sliding Contacts in a Traction System

    Sonia LEVA  Adriano Paolo MORANDO  Riccardo Enrico ZICH  

     
    PAPER-EMC Evaluation

      Vol:
    E83-B No:3
      Page(s):
    519-524

    The pantograph current collector-catenary contact has been recognized as an established cause of permanent electromagnetic perturbation in a railway environment. In this paper the problems due to pantograph-catenary crawling are addressed. Introducing a suitable model for the radiating contacts, results in agreement with classical fields theory and with experimental measurements may be deduced.

  • Bandwidth Allocation for Virtual Paths in ATM Networks with Dynamic Routing

    Eric W. M. WONG  Andy K. M. CHAN  Sammy CHAN  King-Tim KO  

     
    PAPER-Communication Networks and Services

      Vol:
    E83-B No:3
      Page(s):
    626-637

    The Virtual Path (VP) concept in ATM networks simplifies network structure, traffic control and resource management. For VP formulation, a VP can carry traffic of the same type (the separate scheme) or of different types (the unified scheme). For VP adjustment, a certain amount of bandwidth can be dynamically assigned (reserved) to VPs, where the amount (the bandwidth incremental/decremental size) is a predetermined system parameter. In this paper, we study Least Loaded Path-based dynamic routing schemes with various residual bandwidth definitions under different bandwidth allocation (VP formulation and adjustment) schemes. In particular, we evaluate the call blocking probability and VP set-up processing load with varying (bandwidth) incremental sizes. Also, We investigate numerically how the use of VP trades the blocking probability with the processing load. It is found that the unified scheme could outperform the separate scheme in certain incremental sizes. Moreover, we propose two ways to reduce the processing load without increasing the blocking probability. Using these methods, the separate scheme always outperforms the unified scheme.

  • Design of Integer Wavelet Filters for Image Compression

    Hitoshi KIYA  Hiroyuki KOBAYASHI  Osamu WATANABE  

     
    LETTER

      Vol:
    E83-A No:3
      Page(s):
    487-491

    This paper discusses a method of designing linear phase two-channel filter banks for integer wavelet transform. We show that the designed filter banks are easily structed as the lifting form by leading relationship between designed filters and lifting structure. The designed integer wavelets are applied to image compression to verify the efficiency of our method.

  • Temperature Sensor Based on Self-Interference of a Single Long-Period Fiber Grating

    Byeong Ha LEE  Youngjoo CHUNG  Won-Taek HAN  Un-Chul PAEK  

     
    PAPER-Physical and Mechanical Sensors

      Vol:
    E83-C No:3
      Page(s):
    287-292

    A novel temperature sensor device based on a conventional long-period fiber grating but having an improved sensing resolution is presented. By forming a reflector at one cleaved end of the fiber embedding a long-period grating, a fine interference fringe pattern was obtained within the conventional broadband resonant spectrum of the grating. Due to the fine internal structure of the reflection spectrum of the proposed device, the accuracy in reading the temperature-induced resonant wavelength shift was improved. The formation of the self-interference fringe is analyzed and its properties are discussed in detail. The performance of the proposed device is analyzed by measuring the resonant wavelength shift of the device placed in a hot oven under varying temperature. The rate of the fringe shift is measured to be 551 pm/. The rms deviation is 10 pm over a 100 dynamic range, which corresponds to 0.2 in rms temperature deviation. The thermal variation of the differential effective index of the fiber is calculated to be (0.3 0.1)10-6/ by comparing the analytic calculations with the experimental results. The interference fringe shift is revealed to be inversely proportional to the differential effective group index of the fiber, which implies that the shifting rate strongly depends on the type of fibers and also on the order of the involved cladding mode.

  • Virtual Source/Virtual Destination (VS/VD) Congestion Control for Multicast ABR Services in ATM Networks

    Chen-Ming CHUANG  Jin-Fu CHANG  

     
    PAPER-Switching and Communication Processing

      Vol:
    E83-B No:3
      Page(s):
    646-658

    Although in recent years, considerable efforts have been exerted on treating the congestion control problems of ABR services in the ATM networks, the focus has been so far mostly on unicast applications. The inclusion of the emerging multicast services in the design of congestion control schemes is still at its infancy. The generic rate-based closed-loop congestion control scheme proposed by the ATM Forum for ABR services suffers from large delay-bandwidth product. VS/VD behavior is therefore proposed by the Forum as an supplement. In this paper, two VS/VD behavior congestion control schemes for multicast ABR services in the ATM networks are examined : forward explicit congestion notification (FECN) and backward explicit congestion notification (BECN). Their performances are analyzed and compared. We further observe that both VS/VD schemes alleviate the problem of consolidation noise and consolidation delay of the RM cells returning from the downstream nodes. The alleviation of consolidation noise and consolidation delay is a major concern of most present researches. Simulation results are also given to support the validity of our analysis and claims.

  • The Development of Software Components for Solving the Vehicle Routing and Facility Location Problems

    Masahiko SHIMOMURA  Mikio KUDO  Hiroaki MOHRI  

     
    INVITED SURVEY PAPER-Approximate Algorithms for Combinatorial Problems

      Vol:
    E83-D No:3
      Page(s):
    510-518

    The vehicle routing and facility location fields are well-developed areas in management science and operations research application. There is an increasing recognition that effective decision-making in these fields requires the adoption of optimization software that can be embedded into a decision support system. In this paper, we describe the implementation details of our software components for solving the vehicle routing and facility location problems.

  • Wavelength Demultiplexer for Optically Amplified WDM Submarine Cable System

    Tomohiro OTANI  Toshio KAWAZAWA  Koji GOTO  

     
    PAPER-Optical Communication

      Vol:
    E83-B No:3
      Page(s):
    690-696

    The wavelength demultiplexer, using cascaded optical fiber gratings and circulators, was proposed and developed for application to optically amplified wavelength-division multiplexing (WDM) submarine cable systems with 100 GHz channel spacing. Our proposed demultiplexer cannot only achieve high wavelength selectivity, small excess loss and effective allocation of dispersion compensation fibers for each channel, but also be upgraded without affecting other existing channels. By using this demultiplexer, it has been successfully confirmed that 8 WDM channels were demultiplexed even after 6,000 km transmission including separate compensation of accumulated chromatic dispersion in each channel.

  • Performance Enhancement of Long Period Fiber Gratings for Strain and Temperature Sensing

    Younggeun HAN  Chang-Seok KIM  Un-Chul PAEK  Youngjoo CHUNG  

     
    PAPER-Physical and Mechanical Sensors

      Vol:
    E83-C No:3
      Page(s):
    282-286

    We will discuss performance optimization of strain and temperature sensors based on long period fiber gratings (LPFGs) through control of the temperature sensitivity of the resonant peak shifts. Distinction between the effects of strain and temperature is a major concern for applications to communication and sensing. This was achieved in this work by suppressing or enhancing the temperature sensitivity by adjusting the doping concentrations of GeO2 and B2O3 in the core or cladding. The LPFGs were fabricated with a CO2 laser by the mechanical stress relaxation and microbending methods. The optimized temperature sensitivities were 0.002 nm/ for the suppressed case and 0.28 nm/ for the enhanced case, respectively. These LPFGs were used for simultaneous measurement of strain and temperature. The result indicates the rms errors of 23 µstrain for the strain and 1.3 for the temperature.

  • Recent Developments in Mesh Routing Algorithms

    Kazuo IWAMA  Eiji MIYANO  

     
    INVITED SURVEY PAPER-Parallel and Distributed Algorithms

      Vol:
    E83-D No:3
      Page(s):
    530-540

    The two dimensional mesh is widely considered to be a promising parallel architecture in its scalability. In this architecture, processors are naturally placed at intersections of horizontal and vertical grids, while there can be three different types of communication links: (i) The first type is the most popular model, called a mesh-connected computer: Each processor is connected to its four neighbours by local connections. (ii) Each processor of the second type is connected to a couple of (row and column) buses. The system is then called a mesh of buses. (iii) The third model is equipped with both buses and local connections, which is called a mesh-connected computer with buses. Mesh routing has received considerable attention for the last two decades, and a variety of algorithms have been proposed. This paper provides an overview of lower and upper bounds for algorithms, with pointers to the literature, and suggests further research directions for mesh routing.

  • Effects of Grating Period and Mode Order on the Growth and Sensitivity of the Resonant Peaks of Long Period Gratings

    Saeed PILEVAR  Trevor W. MACDOUGALL  Christopher C. DAVIS  

     
    PAPER-Passive and Active Devices for Photonic Sensing

      Vol:
    E83-C No:3
      Page(s):
    448-453

    A general analytical expression for describing the growth of the resonant peak wavelengths of long period gratings is derived. The theoretical calculations explain the shift of peak loss wavelengths in the direction of either shorter or longer wavelengths as the induced index change of grating increases. We have calculated and experimentally verified the sensitivity of the resonant peak wavelengths with respect to an overlay index for various grating periods. It is shown that the center wavelength shift of the claddding modes depends strongly on the grating period and the claddding mode order.

2861-2880hit(3578hit)