The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

1181-1200hit(3578hit)

  • Using Satisfiability Solving for Pairwise Testing in the Presence of Constraints

    Toru NANBA  Tatsuhiro TSUCHIYA  Tohru KIKUNO  

     
    LETTER

      Vol:
    E95-A No:9
      Page(s):
    1501-1505

    This letter discusses the applicability of boolean satisfiability (SAT) solving to pairwise testing in practice. Due to its recent rapid advance, using SAT solving seems a promising approach for search-based testing and indeed has already been practiced in test generation for pairwise testing. The previous approaches use SAT solving either for finding a small test set in the absence of parameter constraints or handling constraints, but not for both. This letter proposes an approach that uses a SAT solver for constructing a test set for pairwise testing in the presence of parameter constraints. This allows us to make full use of SAT solving for pairwise testing in practice.

  • Known-Key Attacks on Generalized Feistel Schemes with SP Round Function

    HyungChul KANG  Deukjo HONG  Dukjae MOON  Daesung KWON  Jaechul SUNG  Seokhie HONG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E95-A No:9
      Page(s):
    1550-1560

    We present attacks on the generalized Feistel schemes, where each round function consists of a subkey XOR, S-boxes, and then a linear transformation (i.e. a Substitution-Permutation (SP) round function). Our techniques are based on rebound attacks. We assume that the S-boxes have a good differential property and the linear transformation has an optimal branch number. Under this assumption, we firstly describe known-key distinguishers on the type-1, -2, and -3 generalized Feistel schemes up to 21, 13 and 8 rounds, respectively. Then, we use the distinguishers to make several attacks on hash functions where Merkle-Damgård domain extender is used and the compression function is constructed with Matyas-Meyer-Oseas or Miyaguchi-Preneel hash modes from generalized Feistel schemes. Collision attacks are made for 11 rounds of type-1 Feistel scheme. Near collision attacks are made for 13 rounds of type-1 Feistel scheme and 9 rounds of type-2 Feistel scheme. Half collision attacks are made for 15 rounds of type-1 Feistel scheme, 9 rounds of type-2 Feistel scheme, and 5 rounds of type-3 Feistel scheme.

  • A Numerical Evaluation of Entanglement Sharing Protocols Using Quantum LDPC CSS Codes

    Masakazu YOSHIDA  Manabu HAGIWARA  Takayuki MIYADERA  Hideki IMAI  

     
    PAPER-Information Theory

      Vol:
    E95-A No:9
      Page(s):
    1561-1569

    Entangled states play crucial roles in quantum information theory and its applied technologies. In various protocols such as quantum teleportation and quantum key distribution, a good entangled state shared by a pair of distant players is indispensable. In this paper, we numerically examine entanglement sharing protocols using quantum LDPC CSS codes. The sum-product decoding method enables us to detect uncorrectable errors, and thus, two protocols, Detection and Resending (DR) protocol and Non-Detection (ND) protocol are considered. In DR protocol, the players abort the protocol and repeat it if they detect the uncorrectable errors, whereas in ND protocol they do not abort the protocol. We show that DR protocol yields smaller error rate than ND protocol. In addition, it is shown that rather high reliability can be achieved by DR protocol with quantum LDPC CSS codes.

  • An Identity-Based Secure Distributed Routing Protocol for Wireless Mesh Networks

    Ren Junn HWANG  Yu-Kai HSIAO  

     
    PAPER

      Vol:
    E95-B No:9
      Page(s):
    2718-2727

    This study proposes an efficient identity-based secure routing protocol based on Weil pairing, that considers symmetric and asymmetric links for Wireless Mesh Networks (WMNs). A wireless mesh network is a group of wireless mesh routers and several types of wireless devices (or nodes). Individual nodes cooperate by forwarding packets to each other, allowing nodes to communicate beyond the symmetric or asymmetric links. Asymmetric communication is a special feature of WMNs because of the wireless transmission ranges of different wireless devices may be different. The asymmetric link enhances WMN coverage. Ensuring security in WMNs has become an important issue over the last few years. Existing research on this topic tends to focus on providing security for routing and data content in the symmetric link. However, most studies overlook the asymmetric link in WMNs. This study proposes a novel distributed routing protocol that considers symmetric and asymmetric links. The proposed protocol guarantees the security and high reliability of the established route in a hostile environment, such as WMNs, by avoiding the use of unreliable intermediate nodes. The routes generated by the proposed protocol are shorter than those in prior studies. The major objective of the proposed protocol is to allow trustworthy intermediate nodes to participate in the path construction protocol. Using the proposed protocol, mesh clients out of mesh router wireless transmission range may discover a secure route to securely connect to the mesh router for Internet access. The proposed protocol enhances wireless mesh network coverage and assures security.

  • Accurate and Nonparametric Imaging Algorithm for Targets Buried in Dielectric Medium for UWB Radars

    Ken AKUNE  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E95-C No:8
      Page(s):
    1389-1398

    Ultra-wide band (UWB) pulse radar with high range resolution and dielectric permeability is promising as an internal imaging technique for non-destructive testing or breast cancer detection. Various imaging algorithms for buried objects within a dielectric medium have been proposed, such as aperture synthesis, the time reversal approach and the space-time beamforming algorithm. However, these algorithms mostly require a priori knowledge of the dielectric medium boundary in image focusing, and often suffer from inadequate accuracy to identify the detailed structure of buried targets, such as an edge or specular surface owing to employing the waveform focusing scheme. To overcome these difficulties, this paper proposes an accurate and non-parametric (i.e. using an arbitrary shape without target modeling) imaging algorithm for targets buried in a homogeneous dielectric medium by advancing the RPM (Range Points Migration) algorithm to internal imaging issues, which has been demonstrated to provide an accurate image even for complex-shaped objects in free-space measurement. Numerical simulations, including those for two-dimensional (2-D) and three-dimensional (3-D) cases, verify that the proposed algorithm enhances the imaging accuracy by less than 1/10 of the wavelength and significantly reduces the computational cost by specifying boundary extraction compared with the conventional SAR-based algorithm.

  • Automatic Multi-Stage Clock Gating Optimization Using ILP Formulation

    Xin MAN  Takashi HORIYAMA  Shinji KIMURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E95-A No:8
      Page(s):
    1347-1358

    Clock gating is supported by commercial tools as a power optimization feature based on the guard signal described in HDL (structural method). However, the identification of control signals for gated registers is hard and designer-intensive work. Besides, since the clock gating cells also consume power, it is imperative to minimize the number of inserted clock gating cells and their switching activities for power optimization. In this paper, we propose an automatic multi-stage clock gating algorithm with ILP (Integer Linear Programming) formulation, including clock gating control candidate extraction, constraints construction and optimum control signal selection. By multi-stage clock gating, unnecessary clock pulses to clock gating cells can be avoided by other clock gating cells, so that the switching activity of clock gating cells can be reduced. We find that any multi-stage control signals are also single-stage control signals, and any combination of signals can be selected from single-stage candidates. The proposed method can be applied to 3 or more cascaded stages. The multi-stage clock gating optimization problem is formulated as constraints in LP format for the selection of cascaded clock-gating order of multi-stage candidate combinations, and a commercial ILP solver (IBM CPLEX) is applied to obtain the control signals for each register with minimum switching activity. Those signals are used to generate a gate level description with guarded registers from original design, and a commercial synthesis and layout tools are applied to obtain the circuit with multi-stage clock gating. For a set of benchmark circuits and a Low Density Parity Check (LDPC) Decoder (6.6k gates, 212 F.F.s), the proposed method is applied and actual power consumption is estimated using Synopsys NanoSim after layout. On average, 31% actual power reduction has been obtained compared with original designs with structural clock gating, and more than 10% improvement has been achieved for some circuits compared with single-stage optimization method. CPU time for optimum multi-stage control selection is several seconds for up to 25k variables in LP format. By applying the proposed clock gating, area can also be reduced since the multiplexors controlling register inputs are eliminated.

  • Power Consumption Evaluation of Distributed Computing Network Considering Traffic Locality

    Yukio OGAWA  Go HASEGAWA  Masayuki MURATA  

     
    PAPER

      Vol:
    E95-B No:8
      Page(s):
    2538-2548

    When computing resources are consolidated in a few huge data centers, a massive amount of data is transferred to each data center over a wide area network (WAN). This results in increased power consumption in the WAN. A distributed computing network (DCN), such as a content delivery network, can reduce the traffic from/to the data center, thereby decreasing the power consumed in the WAN. In this paper, we focus on the energy-saving aspect of the DCN and evaluate its effectiveness, especially considering traffic locality, i.e., the amount of traffic related to the geographical vicinity. We first formulate the problem of optimizing the DCN power consumption and describe the DCN in detail. Then, numerical evaluations show that, when there is strong traffic locality and the router has ideal energy proportionality, the system's power consumption is reduced to about 50% of the power consumed in the case where a DCN is not used; moreover, this advantage becomes even larger (up to about 30%) when the data center is located farthest from the center of the network topology.

  • Low Power Clock Gating for Shift Register

    Ki-Sung SOHN  Da-In HAN  Ki-Ju BAEK  Nam-Soo KIM  Yeong-Seuk KIM  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E95-C No:8
      Page(s):
    1447-1448

    A new clock gating circuit suitable for shift register is presented. The proposed clock gating circuit that consists of basic NOR gates is low power and small area. The power consumption of a 16-bit shift register implemented with the proposed clock gating circuit is about 66% lower than that found when using the conventional design.

  • Heating and Burning of Optical Fibers and Cables by Light Scattered from Bubble Train Formed by Optical Fiber Fuse

    Makoto YAMADA  Akisumi TOMOE  Takahiro KINOSHITA  Osanori KOYAMA  Yutaka KATUYAMA  Takashi SHIBUYA  

     
    LETTER-Optical Fiber for Communications

      Vol:
    E95-B No:8
      Page(s):
    2638-2641

    We investigate in detail the scattering properties and heating characteristics in various commercially available optical fibers and fiber cables when a bubble train forms in the middle of the fiber as a result of the fiber fuse phenomenon that occurs when a high power signal is launched into the fiber. We found theoretically and experimentally that almost all the optical light is scattered at the top of the bubble train. The scattered light heats UV coated fiber, nylon jacketed silica fiber, fire-retardant jacketed fiber (PVC or FRPE jacketed fiber) and fire-retardant fiber cable (PVC or FRPE fiber cable), to around 100, over 200 and over 600, respectively, and finally the fiber burns and is destroyed at a launched optical power of 3 W. Furthermore, it is confirmed that the combustion does not spread when we use fire retardant jacketed fibers.

  • Position-Based k-Disjoint Path Routing for Reliable Data Gathering in Wireless Sensor Networks

    Jang Woon BAEK  Young Jin NAM  Dae-Wha SEO  

     
    LETTER-Network

      Vol:
    E95-B No:8
      Page(s):
    2658-2660

    This paper proposes a novel routing algorithm that constructs position-based k-disjoint paths to realize greater resiliency to patterned failure. The proposed algorithm constructs k-disjoint paths that are spatially distributed by using the hop-count based positioning system. Simulation results reveal that the proposed algorithm is more resilient to patterned failure than other routing algorithms, while it has low power consumption and small delay.

  • Beam Tilting Slot Antenna Elements with a Forced Resonance by Reactance Loading

    Ki-Chai KIM  Kazuhiro HIRASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:8
      Page(s):
    2610-2618

    This paper presents the basic characteristics of a beam tilting slot antenna element whose forced resonance is realized by reactance loading; its structure complements that of a dipole antenna element. The radiation pattern is tilted using a properly determined driving point position; a single loading reactance is used to obtain the forced resonance without great changes in the tilt angle. Numerical results show that the reactance element needs to be loaded near the driving point in order to obtain the forced resonance of the antenna and the minimum changes in the beam tilt angle at the same time. When the proposed forced resonant beam tilting slot antenna with a 0.8 λ length is driven at -0.2 λ from the center, the main beam tilt angle of 57.7 degrees and the highest power gain of 3.8 dB are obtained. This slot element has a broad bandwidth, unlike the complementary dipole element.

  • Sparsely Encoded Hopfield Model with Unit Replacement

    Ryota MIYATA  Koji KURATA  Toru AONISHI  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E95-D No:8
      Page(s):
    2124-2132

    We investigate a sparsely encoded Hopfield model with unit replacement by using a statistical mechanical method called self-consistent signal-to-noise analysis. We theoretically obtain a relation between the storage capacity and the number of replacement units for each sparseness a. Moreover, we compare the unit replacement model with the forgetting model in terms of the network storage capacity. The results show that the unit replacement model has a finite value of the optimal sparseness on an open interval 0 (1/2 coding) < a < 1 (the limit of sparseness) to maximize the storage capacity for a large number of replacement units, although the forgetting model does not.

  • MERA: A Micro-Economic Routing Algorithm for Wireless Sensor Networks

    Jesus ESQUIVEL-GOMEZ  Raul E. BALDERAS-NAVARRO  Enrique STEVENS-NAVARRO  Jesus ACOSTA-ELIAS  

     
    LETTER-Network

      Vol:
    E95-B No:8
      Page(s):
    2642-2645

    One of the most important constraints in wireless sensor networks (WSN) is that their nodes, in most of the cases, are powered by batteries, which cannot be replaced or recharged easily. In these types of networks, data transmission is one of the processes that consume a lot of energy, and therefore the embedded routing algorithm should consider this issue by establishing optimal routes in order to avoid premature death and eventually having partitioned nodes network. This paper proposes a new routing algorithm for WSN called Micro-Economic Routing Algorithm (MERA), which is based on the microeconomic model of supply-demand. In such algorithm each node comprising the network fixes a cost for relay messages according to their residual battery energy; and before sending information to the base station, the node searches for the most economical route. In order to test the performance of MERA, we varied the initial conditions of the system such as the network size and the number of defined thresholds. This was done in order to measure the time span for which the first node dies and the number of information messages received by the base station. Using the NS-2 simulator, we compared the performance of MERA against the Conditional Minimum Drain Rate (CMDR) algorithm reported in the literature. An optimal threshold value for the residual battery is estimated to be close to 20%.

  • Research on Characteristics of Field Uniformity in Reverberation Chamber Using Two TX Antennas

    Jung-Hoon KIM  Tae-Heon JANG  Sung-Kuk LIM  Songjun LEE  Sung-Il YANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E95-B No:7
      Page(s):
    2386-2392

    This paper presents a method to improve field uniformity using two TX antennas in a reverberation chamber with less steps of a stirrer. A mode-stirred reverberation chamber (MSRC) is considered as an alternative to the semi-anechoic chamber for an electromagnetic compatibility test because it provides a large test volume, a statistically uniform field, and a high maximum electric field. To improve field uniformity, we introduce two transmitting antennas for excitation in an MSRC, and predict statistical distribution of the complex reflection coefficients (scattering parameters). To prove the validation of our theory and the reliability of measurement results, three kinds of stirrers with different shape and sizes were fabricated and their efficiencies were measured in an MSRC, and then field uniformities have been investigated for 1–3 GHz frequency within the maximum number of independent samples that stirrers can provide. The measurement results show that the average received power is about 1.5 times as high as when using one transmitting antenna, and field uniformity is improved. Use of two transmitting antennas in an MSRC is regarded as a useful method to improve field uniformity at less stirrer steps, for radiated immunity tests.

  • Real-Time Counting People in Crowded Areas by Using Local Empirical Templates and Density Ratios

    Dao-Huu HUNG  Gee-Sern HSU  Sheng-Luen CHUNG  Hideo SAITO  

     
    PAPER-Recognition

      Vol:
    E95-D No:7
      Page(s):
    1791-1803

    In this paper, a fast and automated method of counting pedestrians in crowded areas is proposed along with three contributions. We firstly propose Local Empirical Templates (LET), which are able to outline the foregrounds, typically made by single pedestrians in a scene. LET are extracted by clustering foregrounds of single pedestrians with similar features in silhouettes. This process is done automatically for unknown scenes. Secondly, comparing the size of group foreground made by a group of pedestrians to that of appropriate LET captured in the same image patch with the group foreground produces the density ratio. Because of the local scale normalization between sizes, the density ratio appears to have a bound closely related to the number of pedestrians who induce the group foreground. Finally, to extract the bounds of density ratios for groups of different number of pedestrians, we propose a 3D human models based simulation in which camera viewpoints and pedestrians' proximity are easily manipulated. We collect hundreds of typical occluded-people patterns with distinct degrees of human proximity and under a variety of camera viewpoints. Distributions of density ratios with respect to the number of pedestrians are built based on the computed density ratios of these patterns for extracting density ratio bounds. The simulation is performed in the offline learning phase to extract the bounds from the distributions, which are used to count pedestrians in online settings. We reveal that the bounds seem to be invariant to camera viewpoints and humans' proximity. The performance of our proposed method is evaluated with our collected videos and PETS 2009's datasets. For our collected videos with the resolution of 320 × 240, our method runs in real-time with good accuracy and frame rate of around 30 fps, and consumes a small amount of computing resources. For PETS 2009's datasets, our proposed method achieves competitive results with other methods tested on the same datasets [1],[2].

  • Fast and Structure-Preserving Image Inpainting Based on Probabilistic Structure Estimation

    Takashi SHIBATA  Akihiko IKETANI  Shuji SENDA  

     
    PAPER-Image Synthesis

      Vol:
    E95-D No:7
      Page(s):
    1731-1739

    This paper presents a novel inpainting method based on structure estimation. The method first estimates an initial image that captures the rough structure and colors in the missing region. This image is generated by probabilistically estimating the gradient within the missing region based on edge segments intersecting its boundary, and then by flooding the colors on the boundary into the missing region. The color flooding is formulated as an energy minimization problem, and is efficiently optimized by the conjugate gradient method. Finally, by locally replacing the missing region with local patches similar to both the adjacent patches and the initial image, the inpainted image is synthesized. The initial image not only serves as a guide to ensure the underlying structure is preserved, but also allows the patch selection process to be carried out in a greedy manner, which leads to substantial speedup. Experimental results show the proposed method is capable of preserving the underlying structure in the missing region, while achieving more than 5 times faster computational speed than the state-of-the-art inpainting method. Subjective evaluation of image quality also shows the proposed method outperforms the previous methods.

  • A Novel Steganographic Method with Four-Pixel Differencing and Exploiting Modification Direction

    Xin LIAO  Qiaoyan WEN  Jie ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:7
      Page(s):
    1189-1192

    In this letter, a novel steganographic method with four-pixel differencing and exploiting modification direction is proposed. Secret data are embedded into each four-pixel block by adaptively applying exploiting modification direction technique. The difference value of the four-pixel block is used to judge whether the pixels in edge areas can tolerate larger changes than those in smooth areas. The readjustment guarantees to extract the secret data exactly and to minimize the embedding distortion. Since the proposed method processes non-overlapping 22 pixels blocks instead of two consecutive pixels, the features of edge can be considered sufficiently. Compared with the previous method, experimental results show that the proposed method provides better performance, i.e., larger embedding capacity and better image quality.

  • Node Splitting for Improved Virtual Network Embedding: A Feasibility Study

    Jihun HA  Yongtae PARK  Byungjo KIM  Eunah KIM  Sunhee YANG  Hyogon KIM  

     
    LETTER-Network

      Vol:
    E95-B No:7
      Page(s):
    2463-2466

    When the residual resources on a virtualized substrate network (SN) are insufficient to meet the resource demands from the requested virtual network (VN) at specific locations, we can attempt to accommodate the VN by allocating resources at alternative locations and transparently serve the accesses to the VN by having them internally rerouted to the actually allocated locations. In this letter, we explore the feasibility of nodal resource splitting in such alternative allocation scenarios. We find that in order to facilitate such alternative allocations, we should first define the node-link resource dependencies. Once the dependencies are given, we demonstrate that the splitting can visibly improve the SN utilization and the request rejection rate for VN embedding requests under many network scenarios.

  • Accurate Image Expansion Method Using Range Points Based Ellipse Fitting for UWB Imaging Radar

    Yoriaki ABE  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:7
      Page(s):
    2424-2432

    Ultra-wideband (UWB) pulse radars have a definite advantage in high-range resolution imaging, and are suitable for short-range measurements, particularly at disaster sites or security scenes where optical sensors are rarely suitable because of dust or strong backlighting. Although we have already proposed an accurate imaging algorithm called Range Points Migration (RPM), its reconstructible area is too small to identify the shape of an object if it is far from the radar and the size of the aperture is inadequate. To resolve this problem, this paper proposes a novel image expansion method based on ellipse extrapolation; it enhances extrapolation accuracy by deriving direct estimates of the observed range points distributed in the data space. Numerical validation shows that the proposed method accurately extrapolates part of the target boundary, even if an extremely small region of the target boundary is obtained by RPM.

  • Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Heedong CHOI  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2377-2385

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

1181-1200hit(3578hit)