The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tract(469hit)

21-40hit(469hit)

  • Competent Triple Identification for Knowledge Graph Completion under the Open-World Assumption

    Esrat FARJANA  Natthawut KERTKEIDKACHORN  Ryutaro ICHISE  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2021/12/02
      Vol:
    E105-D No:3
      Page(s):
    646-655

    The usefulness and usability of existing knowledge graphs (KGs) are mostly limited because of the incompleteness of knowledge compared to the growing number of facts about the real world. Most existing ontology-based KG completion methods are based on the closed-world assumption, where KGs are fixed. In these methods, entities and relations are defined, and new entity information cannot be easily added. In contrast, in open-world assumptions, entities and relations are not previously defined. Thus there is a vast scope to find new entity information. Despite this, knowledge acquisition under the open-world assumption is challenging because most available knowledge is in a noisy unstructured text format. Nevertheless, Open Information Extraction (OpenIE) systems can extract triples, namely (head text; relation text; tail text), from raw text without any prespecified vocabulary. Such triples contain noisy information that is not essential for KGs. Therefore, to use such triples for the KG completion task, it is necessary to identify competent triples for KGs from the extracted triple set. Here, competent triples are the triples that can contribute to add new information to the existing KGs. In this paper, we propose the Competent Triple Identification (CTID) model for KGs. We also propose two types of feature, namely syntax- and semantic-based features, to identify competent triples from a triple set extracted by a state-of-the-art OpenIE system. We investigate both types of feature and test their effectiveness. It is found that the performance of the proposed features is about 20% better compared to that of the ReVerb system in identifying competent triples.

  • Formal Verification of Fair Exchange Based on Bitcoin Smart Contracts

    Cheng SHI  Kazuki YONEYAMA  

     
    PAPER

      Pubricized:
    2021/10/25
      Vol:
    E105-A No:3
      Page(s):
    242-267

    Smart contracts are protocols that can automatically execute a transaction including an electronic contract when a condition is satisfied without a trusted third party. In a representative use-case, a smart contract is executed when multiple parties fairly trade on a blockchain asset. On blockchain systems, a smart contract can be regarded as a system participant, responding to the information received, receiving and storing values, and sending information and values outwards. Also, a smart contract can temporarily keep assets, and always perform operations in accordance with prior rules. Many cryptocurrencies have implemented smart contracts. At POST2018, Atzei et al. give formulations of seven fair exchange protocols using smart contract on Bitcoin: oracle, escrow, intermediated payment, timed commitment, micropayment channels, fair lotteries, and contingent payment. However, they only give an informal discussion on security. In this paper, we verify the fairness of their seven protocols by using the formal verification tool ProVerif. As a result, we show that five protocols (the oracle, intermediated payment, timed commitment, micropayment channels and fair lotteries protocols) satisfy fairness, which were not proved formally. Also, we re-find known attacks to break fairness of two protocols (the escrow and contingent payment protocols). For the escrow protocol, we formalize the two-party scheme and the three-party scheme with an arbitrator, and show that the two-party scheme does not satisfy fairness as Atzei et al. showed. For the contingent payment protocol, we formalize the protocol with the non-interactive zero-knowledge proof (NIZK), and re-find the attack shown by Campanelli et al. at CCS 2017. Also, we show that a countermeasure with subversion NIZK against the attack works properly while it is not formally proved.

  • A Privacy-Preserving Data Feed Scheme for Smart Contracts

    Hao WANG  Zhe LIU  Chunpeng GE  Kouichi SAKURAI  Chunhua SU  

     
    INVITED PAPER

      Pubricized:
    2021/12/06
      Vol:
    E105-D No:2
      Page(s):
    195-204

    Smart contracts are becoming more and more popular in financial scenarios like medical insurance. Rather than traditional schemes, using smart contracts as a medium is a better choice for both participants, as it is fairer, more reliable, more efficient, and enables real-time payment. However, medical insurance contracts need to input the patient's condition information as the judgment logic to trigger subsequent execution. Since the blockchain is a closed network, it lacks a secure network environment for data interaction with the outside world. The Data feed aims to provide the service of the on-chain and off-chain data interaction. Existing researches on the data feed has solved the security problems on it effectively, such as Town Crier, TLS-N and they have also taken into account the privacy-preserving problems. However, these schemes cannot actually protect privacy because when the ciphertext data is executed by the contract, privacy information can still be inferred by analyzing the transaction results, since states of the contract are publicly visible. In this paper, based on zero-knowledge proof and Hawk technology, a on-and-off-chain complete smart contract data feed privacy-preserving scheme is proposed. In order to present our scheme more intuitively, we combined the medical insurance compensation case to implement it, which is called MIPDF. In our MIPDF, the patient and the insurance company are parties involved in the contract, and the hospital is the data provider of data feed. The patient's medical data is sent to the smart contract under the umbrella of the zero-knowledge proof signature scheme. The smart contract verifies the proof and calculates the insurance premium based on the judgment logic. Meanwhile, we use Hawk technology to ensure the privacy of on-chain contract execution, so that no information will be disclosed due to the result of contract execution. We give a general description of our scheme within the Universal Composability (UC) framework. We experiment and evaluate MIPDF on Ethereum for in-depth analysis. The results show that our scheme can securely and efficiently support the functions of medical insurance and achieve complete privacy-preserving.

  • Multi-Party Electronic Contract Signing Protocol Based on Blockchain

    Tong ZHANG  Yujue WANG  Yong DING  Qianhong WU  Hai LIANG  Huiyong WANG  

     
    PAPER

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:2
      Page(s):
    264-271

    With the development of Internet technology, the demand for signing electronic contracts has been greatly increased. The electronic contract generated by the participants in an online way enjoys the same legal effect as paper contract. The fairness is the key issue in jointly signing electronic contracts by the involved participants, so that all participants can either get the same copy of the contract or nothing. Most existing solutions only focus on the fairness of electronic contract generation between two participants, where the digital signature can effectively guarantee the fairness of the exchange of electronic contracts and becomes the conventional technology in designing the contract signing protocol. In this paper, an efficient blockchain-based multi-party electronic contract signing (MECS) protocol is presented, which not only offers the fairness of electronic contract generation for multiple participants, but also allows each participant to aggregate validate the signed copy of others. Security analysis shows that the proposed MECS protocol enjoys unforgeability, non-repudiation and fairness of electronic contracts, and performance analysis demonstrates the high efficiency of our construction.

  • Secure Blockchain Interworking Using Extended Smart Contract

    Shingo FUJIMOTO  Takuma TAKEUCHI  Yoshiki HIGASHIKADO  

     
    PAPER

      Pubricized:
    2021/10/08
      Vol:
    E105-D No:2
      Page(s):
    227-234

    Blockchain is a distributed ledger technology used for trading digital assets, such as cryptocurrency, and trail records that need to be audited by third parties. The use cases of blockchain are expanding beyond cryptocurrency management. In particular, the token economy, in which tokenized assets are exchanged across different blockchain ledgers, is gaining popularity. Cross-chain technologies such as atomic swap have emerged as security technologies to realize this new use case of blockchain. However, existing approaches of cross-chain technology have unresolved issues, such as application limitations on different blockchain platforms owing to the incompatibility of the communication interface and crypto algorithm and inability to handle a complex business logic such as the escrow trade. In this study, the ConnectionChain is proposed, which enables the execution of an extended smart contract using abstracted operation on interworking ledgers. Moreover, field experimental results using the system prototype are presented and explained.

  • PDPM: A Patient-Defined Data Privacy Management with Nudge Theory in Decentralized E-Health Environments

    Seolah JANG  Sandi RAHMADIKA  Sang Uk SHIN  Kyung-Hyune RHEE  

     
    PAPER

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:11
      Page(s):
    1839-1849

    A private decentralized e-health environment, empowered by blockchain technology, grants authorized healthcare entities to legitimately access the patient's medical data without relying on a centralized node. Every activity from authorized entities is recorded immutably in the blockchain transactions. In terms of privacy, the e-health system preserves a default privacy option as an initial state for every patient since the patients may frequently customize their medical data over time for several purposes. Moreover, adjustments in the patient's privacy contexts are often solely from the patient's initiative without any doctor or stakeholders' recommendation. Therefore, we design, implement, and evaluate user-defined data privacy utilizing nudge theory for decentralized e-health systems named PDPM to tackle these issues. Patients can determine the privacy of their medical records to be closed to certain parties. Data privacy management is dynamic, which can be executed on the blockchain via the smart contract feature. Tamper-proof user-defined data privacy can resolve the dispute between the e-health entities related to privacy management and adjustments. In short, the authorized entities cannot deny any changes since every activity is recorded in the ledgers. Meanwhile, the nudge theory technique supports providing the best patient privacy recommendations based on their behaviour activities even though the final decision rests on the patient. Finally, we demonstrate how to use PDPM to realize user-defined data privacy management in decentralized e-health environments.

  • Electromagnetic Field Theory Interpretation on Light Extraction of Organic Light Emitting Diodes (OLEDs)

    Yoshinari ISHIDO  Wataru MIZUTANI  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2021/05/31
      Vol:
    E104-C No:11
      Page(s):
    663-666

    Focusing on the planar slab structure of OLEDs, it is found the threshold value of the in-plane wave number at which the spectrum component of the electromagnetic field at the outermost boundary is divided into a radiation mode and a guided (confined) mode. This is equivalent to the total reflection condition in the ray optics. The spectral integral of the Poynting power was calculated from the boundary values of the electromagnetic fields in each. Both become average power and reactive power respectively, and the sum of them becomes the total volt-amperes from the light emitting dipole. Therefore, the ratio of average power to this total is the power factor that can be a quantitative index of light extraction.

  • An Effective Feature Extraction Mechanism for Intrusion Detection System

    Cheng-Chung KUO  Ding-Kai TSENG  Chun-Wei TSAI  Chu-Sing YANG  

     
    PAPER

      Pubricized:
    2021/07/27
      Vol:
    E104-D No:11
      Page(s):
    1814-1827

    The development of an efficient detection mechanism to determine malicious network traffic has been a critical research topic in the field of network security in recent years. This study implemented an intrusion-detection system (IDS) based on a machine learning algorithm to periodically convert and analyze real network traffic in the campus environment in almost real time. The focuses of this study are on determining how to improve the detection rate of an IDS and how to detect more non-well-known port attacks apart from the traditional rule-based system. Four new features are used to increase the discriminant accuracy. In addition, an algorithm for balancing the data set was used to construct the training data set, which can also enable the learning model to more accurately reflect situations in real environment.

  • PSTNet: Crowd Flow Prediction by Pyramidal Spatio-Temporal Network

    Enze YANG  Shuoyan LIU  Yuxin LIU  Kai FANG  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/04/12
      Vol:
    E104-D No:10
      Page(s):
    1780-1783

    Crowd flow prediction in high density urban scenes is involved in a wide range of intelligent transportation and smart city applications, and it has become a significant topic in urban computing. In this letter, a CNN-based framework called Pyramidal Spatio-Temporal Network (PSTNet) for crowd flow prediction is proposed. Spatial encoding is employed for spatial representation of external factors, while prior pyramid enhances feature dependence of spatial scale distances and temporal spans, after that, post pyramid is proposed to fuse the heterogeneous spatio-temporal features of multiple scales. Experimental results based on TaxiBJ and MobileBJ demonstrate that proposed PSTNet outperforms the state-of-the-art methods.

  • Diversity-Robust Acoustic Feature Signatures Based on Multiscale Fractal Dimension for Similarity Search of Environmental Sounds

    Motohiro SUNOUCHI  Masaharu YOSHIOKA  

     
    PAPER-Music Information Processing

      Pubricized:
    2021/07/02
      Vol:
    E104-D No:10
      Page(s):
    1734-1748

    This paper proposes new acoustic feature signatures based on the multiscale fractal dimension (MFD), which are robust against the diversity of environmental sounds, for the content-based similarity search. The diversity of sound sources and acoustic compositions is a typical feature of environmental sounds. Several acoustic features have been proposed for environmental sounds. Among them is the widely-used Mel-Frequency Cepstral Coefficients (MFCCs), which describes frequency-domain features. However, in addition to these features in the frequency domain, environmental sounds have other important features in the time domain with various time scales. In our previous paper, we proposed enhanced multiscale fractal dimension signature (EMFD) for environmental sounds. This paper extends EMFD by using the kernel density estimation method, which results in better performance of the similarity search tasks. Furthermore, it newly proposes another acoustic feature signature based on MFD, namely very-long-range multiscale fractal dimension signature (MFD-VL). The MFD-VL signature describes several features of the time-varying envelope for long periods of time. The MFD-VL signature has stability and robustness against background noise and small fluctuations in the parameters of sound sources, which are produced in field recordings. We discuss the effectiveness of these signatures in the similarity sound search by comparing with acoustic features proposed in the DCASE 2018 challenges. Due to the unique descriptiveness of our proposed signatures, we confirmed the signatures are effective when they are used with other acoustic features.

  • Gated Convolutional Neural Networks with Sentence-Related Selection for Distantly Supervised Relation Extraction

    Yufeng CHEN  Siqi LI  Xingya LI  Jinan XU  Jian LIU  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1486-1495

    Relation extraction is one of the key basic tasks in natural language processing in which distant supervision is widely used for obtaining large-scale labeled data without expensive labor cost. However, the automatically generated data contains massive noise because of the wrong labeling problem in distant supervision. To address this problem, the existing research work mainly focuses on removing sentence-level noise with various sentence selection strategies, which however could be incompetent for disposing word-level noise. In this paper, we propose a novel neural framework considering both intra-sentence and inter-sentence relevance to deal with word-level and sentence-level noise from distant supervision, which is denoted as Sentence-Related Gated Piecewise Convolutional Neural Networks (SR-GPCNN). Specifically, 1) a gate mechanism with multi-head self-attention is adopted to reduce word-level noise inside sentences; 2) a soft-label strategy is utilized to alleviate wrong-labeling propagation problem; and 3) a sentence-related selection model is designed to filter sentence-level noise further. The extensive experimental results on NYT dataset demonstrate that our approach filters word-level and sentence-level noise effectively, thus significantly outperforms all the baseline models in terms of both AUC and top-n precision metrics.

  • A Fast Algorithm for Liquid Voting on Blockchain

    Xiaoping ZHOU  Peng LI  Yulong ZENG  Xuepeng FAN  Peng LIU  Toshiaki MIYAZAKI  

     
    PAPER

      Pubricized:
    2021/05/17
      Vol:
    E104-D No:8
      Page(s):
    1163-1171

    Blockchain-based voting, including liquid voting, has been extensively studied in recent years. However, it remains challenging to implement liquid voting on blockchain using Ethereum smart contract. The challenge comes from the gas limit, which is that the number of instructions for processing a ballot cannot exceed a certain amount. This restricts the application scenario with respect to algorithms whose time complexity is linear to the number of voters, i.e., O(n). As the blockchain technology can well share and reuse the resources, we study a model of liquid voting on blockchain and propose a fast algorithm, named Flash, to eliminate the restriction. The key idea behind our algorithm is to shift some on-chain process to off-chain. In detail, we first construct a Merkle tree off-chain which contains all voters' properties. Second, we use Merkle proof and interval tree to process each ballot with O(log n) on-chain time complexity. Theoretically, the algorithm can support up to 21000 voters with respect to the current gas limit on Ethereum. Experimentally, the result implies that the consumed gas fee remains at a very low level when the number of voters increases. This means our algorithm makes liquid voting on blockchain practical even for massive voters.

  • Energy-Efficient Post-Processing Technique Having High Extraction Efficiency for True Random Number Generators Open Access

    Ruilin ZHANG  Xingyu WANG  Hirofumi SHINOHARA  

     
    PAPER

      Pubricized:
    2021/01/28
      Vol:
    E104-C No:7
      Page(s):
    300-308

    In this paper, we describe a post-processing technique having high extraction efficiency (ExE) for de-biasing and de-correlating a random bitstream generated by true random number generators (TRNGs). This research is based on the N-bit von Neumann (VN_N) post-processing method. It improves the ExE of the original von Neumann method close to the Shannon entropy bound by a large N value. However, as the N value increases, the mapping table complexity increases exponentially (2N), which makes VN_N unsuitable for low-power TRNGs. To overcome this problem, at the algorithm level, we propose a waiting strategy to achieve high ExE with a small N value. At the architectural level, a Hamming weight mapping-based hierarchical structure is used to reconstruct the large mapping table using smaller tables. The hierarchical structure also decreases the correlation factor in the raw bitstream. To develop a technique with high ExE and low cost, we designed and fabricated an 8-bit von Neumann with waiting strategy (VN_8W) in a 130-nm CMOS. The maximum ExE of VN_8W is 62.21%, which is 2.49 times larger than the ExE of the original von Neumann. NIST SP 800-22 randomness test results proved the de-biasing and de-correlation abilities of VN_8W. As compared with the state-of-the-art optimized 7-element iterated von Neumann, VN_8W achieved more than 20% energy reduction with higher ExE. At 0.45V and 1MHz, VN_8W achieved the minimum energy of 0.18pJ/bit, which was suitable for sub-pJ low energy TRNGs.

  • SLIT: An Energy-Efficient Reconfigurable Hardware Architecture for Deep Convolutional Neural Networks Open Access

    Thi Diem TRAN  Yasuhiko NAKASHIMA  

     
    PAPER

      Pubricized:
    2020/12/18
      Vol:
    E104-C No:7
      Page(s):
    319-329

    Convolutional neural networks (CNNs) have dominated a range of applications, from advanced manufacturing to autonomous cars. For energy cost-efficiency, developing low-power hardware for CNNs is a research trend. Due to the large input size, the first few convolutional layers generally consume most latency and hardware resources on hardware design. To address these challenges, this paper proposes an innovative architecture named SLIT to extract feature maps and reconstruct the first few layers on CNNs. In this reconstruction approach, total multiply-accumulate operations are eliminated on the first layers. We evaluate new topology with MNIST, CIFAR, SVHN, and ImageNet datasets on image classification application. Latency and hardware resources of the inference step are evaluated on the chip ZC7Z020-1CLG484C FPGA with Lenet-5 and VGG schemes. On the Lenet-5 scheme, our architecture reduces 39% of latency and 70% of hardware resources with a 0.456 W power consumption compared to previous works. Even though the VGG models perform with a 10% reduction in hardware resources and latency, we hope our overall results will potentially give a new impetus for future studies to reach a higher optimization on hardware design. Notably, the SLIT architecture efficiently merges with most popular CNNs at a slightly sacrificing accuracy of a factor of 0.27% on MNIST, ranging from 0.5% to 1.5% on CIFAR, approximately 2.2% on ImageNet, and remaining the same on SVHN databases.

  • Individuality-Preserving Silhouette Extraction for Gait Recognition and Its Speedup

    Masakazu IWAMURA  Shunsuke MORI  Koichiro NAKAMURA  Takuya TANOUE  Yuzuko UTSUMI  Yasushi MAKIHARA  Daigo MURAMATSU  Koichi KISE  Yasushi YAGI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    992-1001

    Most gait recognition approaches rely on silhouette-based representations due to high recognition accuracy and computational efficiency. A fundamental problem for those approaches is how to extract individuality-preserved silhouettes from real scenes accurately. Foreground colors may be similar to background colors, and the background is cluttered. Therefore, we propose a method of individuality-preserving silhouette extraction for gait recognition using standard gait models (SGMs) composed of clean silhouette sequences of various training subjects as shape priors. The SGMs are smoothly introduced into a well-established graph-cut segmentation framework. Experiments showed that the proposed method achieved better silhouette extraction accuracy by more than 2.3% than representative methods and better identification rate of gait recognition (improved by more than 11.0% at rank 20). Besides, to reduce the computation cost, we introduced approximation in the calculation of dynamic programming. As a result, without reducing the segmentation accuracy, we reduced 85.0% of the computational cost.

  • Model Reverse-Engineering Attack against Systolic-Array-Based DNN Accelerator Using Correlation Power Analysis Open Access

    Kota YOSHIDA  Mitsuru SHIOZAKI  Shunsuke OKURA  Takaya KUBOTA  Takeshi FUJINO  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    152-161

    A model extraction attack is a security issue in deep neural networks (DNNs). Information on a trained DNN model is an attractive target for an adversary not only in terms of intellectual property but also of security. Thus, an adversary tries to reveal the sensitive information contained in the trained DNN model from machine-learning services. Previous studies on model extraction attacks assumed that the victim provides a machine-learning cloud service and the adversary accesses the service through formal queries. However, when a DNN model is implemented on an edge device, adversaries can physically access the device and try to reveal the sensitive information contained in the implemented DNN model. We call these physical model extraction attacks model reverse-engineering (MRE) attacks to distinguish them from attacks on cloud services. Power side-channel analyses are often used in MRE attacks to reveal the internal operation from power consumption or electromagnetic leakage. Previous studies, including ours, evaluated MRE attacks against several types of DNN processors with power side-channel analyses. In this paper, information leakage from a systolic array which is used for the matrix multiplication unit in the DNN processors is evaluated. We utilized correlation power analysis (CPA) for the MRE attack and reveal weight parameters of a DNN model from the systolic array. Two types of the systolic array were implemented on field-programmable gate array (FPGA) to demonstrate that CPA reveals weight parameters from those systolic arrays. In addition, we applied an extended analysis approach called “chain CPA” for robust CPA analysis against the systolic arrays. Our experimental results indicate that an adversary can reveal trained model parameters from a DNN accelerator even if the DNN model parameters in the off-chip bus are protected with data encryption. Countermeasures against side-channel leaks will be important for implementing a DNN accelerator on a FPGA or application-specific integrated circuit (ASIC).

  • Acceleration of Automatic Building Extraction via Color-Clustering Analysis Open Access

    Masakazu IWAI  Takuya FUTAGAMI  Noboru HAYASAKA  Takao ONOYE  

     
    LETTER-Computer Graphics

      Vol:
    E103-A No:12
      Page(s):
    1599-1602

    In this paper, we improve upon the automatic building extraction method, which uses a variational inference Gaussian mixture model for performing color clustering, by accelerating its computational speed. The improved method decreases the computational time using an image with reduced resolution upon applying color clustering. According to our experiment, in which we used 106 scenery images, the improved method could extract buildings at a rate 86.54% faster than that of the conventional methods. Furthermore, the improved method significantly increased the extraction accuracy by 1.8% or more by preventing over-clustering using the reduced image, which also had a reduced number of the colors.

  • Unconstrained Facial Expression Recognition Based on Feature Enhanced CNN and Cross-Layer LSTM

    Ying TONG  Rui CHEN  Ruiyu LIANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2020/07/30
      Vol:
    E103-D No:11
      Page(s):
    2403-2406

    LSTM network have shown to outperform in facial expression recognition of video sequence. In view of limited representation ability of single-layer LSTM, a hierarchical attention model with enhanced feature branch is proposed. This new network architecture consists of traditional VGG-16-FACE with enhanced feature branch followed by a cross-layer LSTM. The VGG-16-FACE with enhanced branch extracts the spatial features as well as the cross-layer LSTM extracts the temporal relations between different frames in the video. The proposed method is evaluated on the public emotion databases in subject-independent and cross-database tasks and outperforms state-of-the-art methods.

  • A Visual Inspection System for Accurate Positioning of Railway Fastener

    Jianwei LIU  Hongli LIU  Xuefeng NI  Ziji MA  Chao WANG  Xun SHAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/07/17
      Vol:
    E103-D No:10
      Page(s):
    2208-2215

    Automatic disassembly of railway fasteners is of great significance for improving the efficiency of replacing rails. The accurate positioning of fastener is the key factor to realize automatic disassembling. However, most of the existing literature mainly focuses on fastener region positioning and the literature on accurate positioning of fasteners is scarce. Therefore, this paper constructed a visual inspection system for accurate positioning of fastener (VISP). At first, VISP acquires railway image by image acquisition subsystem, and then the subimage of fastener can be obtained by coarse-to-fine method. Subsequently, the accurate positioning of fasteners can be completed by three steps, including contrast enhancement, binarization and spike region extraction. The validity and robustness of the VISP were verified by vast experiments. The results show that VISP has competitive performance for accurate positioning of fasteners. The single positioning time is about 260ms, and the average positioning accuracy is above 90%. Thus, it is with theoretical interest and potential industrial application.

  • Asymmetric Learning for Stereo Matching Cost Computation

    Zhongjian MA  Dongzhen HUANG  Baoqing LI  Xiaobing YUAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/07/13
      Vol:
    E103-D No:10
      Page(s):
    2162-2167

    Current stereo matching methods benefit a lot from the precise stereo estimation with Convolutional Neural Networks (CNNs). Nevertheless, patch-based siamese networks rely on the implicit assumption of constant depth within a window, which does not hold for slanted surfaces. Existing methods for handling slanted patches focus on post-processing. In contrast, we propose a novel module for matching cost networks to overcome this bias. Slanted objects appear horizontally stretched between stereo pairs, suggesting that the feature extraction in the horizontal direction should be different from that in the vertical direction. To tackle this distortion, we utilize asymmetric convolutions in our proposed module. Experimental results show that the proposed module in matching cost networks can achieve higher accuracy with fewer parameters compared to conventional methods.

21-40hit(469hit)