The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Koichi TANNO(28hit)

21-28hit(28hit)

  • Optimization and Verification of Current-Mode Multiple-Valued Digit ORNS Arithmetic Circuits

    Motoi INABA  Koichi TANNO  Hiroki TAMURA  Okihiko ISHIZUKA  

     
    PAPER-Multiple-Valued VLSI Technology

      Vol:
    E93-D No:8
      Page(s):
    2073-2079

    In this paper, optimization and verification of the current-mode multiple-valued digit ORNS arithmetic circuits are presented. The multiple-valued digit ORNS is the redundant number system using digit values in the multiple-valued logic and it realizes the full-parallel calculation without any ripple carry propagation. First, the 4-bit addition and multiplication algorithms employing the multiple-valued digit ORNS are optimized through logic-level analyses. In the multiplier, the maximum digit value and the number of modulo operations in series are successfully reduced from 49 to 29 and from 3 to 2, respectively, by the arrangement of addition lines. Next, circuit components such as a current mirror are verified using HSPICE. The proposed switched current mirror which has functions of a current mirror and an analog switch is effective to reduce the minimum operation voltage by about 0.13 volt. Besides an ordinary strong-inversion region, the circuit components operated under the weak-inversion region show good simulation results with the unit current of 10 nanoamperes, and it brings both of the lower power dissipation and the stable operation under the lower supply voltage.

  • A High-Speed Binary to Residue Converter Using a Signed-Digit Number Representation

    Makoto SYUTO  Eriko SATAKE  Koichi TANNO  Okihiko ISHIZUKA  

     
    LETTER-VLSI Systems

      Vol:
    E85-D No:5
      Page(s):
    903-905

    In this letter, we propose high-speed binary to residue converters for moduli 2n, 2n 1 without using look-up table. For integration of residue arithmetic circuit using a signed-digit (SD) number representation with ordinary binary system, the proposed circuits carry out the efficient conversion. Using SD adders instead of ordinary adders that are used in conventional binary to residue converter, the high-speed conversion without the carry propagation can be achieved. Thus, the proposed converter is independent of the size of modulus and can speed up the binary to residue conversion. On the simulation, the conversion delay times are 1.78 ns for modulus 210-1 and 1.73 ns for modulus 210+1 under the condition of 0.6 µm CMOS technology, respectively. The active area of the proposed converter for moduli 210 1 is 335 µm325 µm.

  • Neuron-MOS Current Mirror Circuit and Its Application to Multi-Valued Logic

    Jing SHEN  Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    940-948

    A neuron-MOS transistor (νMOS) is applied to current-mode multi-valued logic (MVL) circuits. First, a novel low-voltage and low-power νMOS current mirror is presented. Then, a threshold detector and a quaternary T-gate using the proposed νMOS current mirrors are proposed. The minimum output voltage of the νMOS current mirror is decreased by VT (threshold voltage), compared with the conventional double cascode current mirror. The νMOS threshold detector is built on a νMOS current comparator originally composed of νMOS current mirrors. It has a high output swing and sharp transfer characteristics. The gradient of the proposed comparator output in the transfer region can be increased 6.3-fold compared with that in the conventional comparator. Along with improved operation of the novel current comparator, the discriminative ability of the proposed νMOS threshold detector is also increased. The performances of the proposed circuits are validated by HSPICE with Motorola 1.5 µm CMOS device parameters. Furthermore, the operation of a νMOS current mirror is also confirmed through experiments on test chips fabricated by VDEC*. The active area of the proposed νMOS current mirror is 63 µm 51 µm.

  • Midpoint-Validation Method for Support Vector Machine Classification

    Hiroki TAMURA  Koichi TANNO  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E91-D No:7
      Page(s):
    2095-2098

    In this paper, we propose a midpoint-validation method which improves the generalization of Support Vector Machine. The proposed method creates midpoint data, as well as a turning adjustment parameter of Support Vector Machine using midpoint data and previous training data. We compare its performance with the original Support Vector Machine, Multilayer Perceptron, Radial Basis Function Neural Network and also tested our proposed method on several benchmark problems. The results obtained from the simulation shows the effectiveness of the proposed method.

  • Low-Voltage, Low-Distortion and Rail-to-Rail CMOS Sample and Hold Circuit

    Koichi TANNO  Kiminobu SATO  Hisashi TANAKA  Okihiko ISHIZUKA  

     
    LETTER

      Vol:
    E88-A No:10
      Page(s):
    2696-2698

    In this letter, we propose a sample and hold circuit (S/H circuit) with the clock boost technique and the input signal tracking technique. The proposed circuit block generates the clock with the amplitude of VDD + vin, and the clock is used to control the MOS switch. By applying this circuit to a S/H circuit, we can deal with the rail-to-rail signal with maintaining low distortion. Furthermore, the hold error caused by the charge injection and the clock feedthrough can be also reduced by using the dummy switch. The Star-HSPICE simulation results are reported in this letter.

  • A Study on Gaze Estimation System of the Horizontal Angle Using Electrooculogram Signals

    Mingmin YAN  Hiroki TAMURA  Koichi TANNO  

     
    PAPER-Circuit Implementations

      Vol:
    E97-D No:9
      Page(s):
    2330-2337

    The aim of this study is to present electrooculogram signals that can be used for human computer interface efficiently. Establishing an efficient alternative channel for communication without overt speech and hand movements is important to increase the quality of life for patients suffering from Amyotrophic Lateral Sclerosis or other illnesses that prevent correct limb and facial muscular responses. In this paper, we introduce the gaze estimation system of electrooculogram signals. Using this system, the electrooculogram signals can be recorded when the patients focused on each direct. All these recorded signals could be analyzed using math-method and the mathematical model will be set up. Gaze estimation can be recognized using electrooculogram signals follow these models.

  • Design and Implementation of a Calibrating T-Model Neural-Based A/D Converter

    Zheng TANG  Yuichi SHIRATA  Okihiko ISHIZUKA  Koichi TANNO  

     
    PAPER-Analog Signal Processing

      Vol:
    E79-A No:4
      Page(s):
    553-559

    A calibrating analog-to digital (A/D) converter employing a T-Model neural network is described. The T-Model neural-based A/D converter architecure is presented with particular emphasis on the elimination of local minimum of the Hopfield neural network. Furthermore, a teacher forcing algorithm is presented and used to synthesize the A/D converter and correct errors of the converter due to offset and device mismatch. An experimental A/D converter using standard 5-µm CMOS discrete IC circuits demonstrates high-performance analog-to-digital conversion and calibrating.

  • Design of a Novel MOS VT Extractor Circuit

    Koichi TANNO  Okihiko ISHIZUKA  Zhen TANG  

     
    LETTER-Electronic Circuits

      Vol:
    E78-C No:9
      Page(s):
    1306-1310

    This paper describes a novel input-free MOS VT extractor circuit. The circuit consists of a bias voltage block and a novel VT extractor block. The proposed VT extractor block has the advantages of the ground-referenced output, low influence of the nonideality, few numbers of transistors and no influence of the PMOS process. The PSpice simulations show the supply voltage range and the bias voltage range of the proposed circuit are wider than those of Johnson's or Wang's.

21-28hit(28hit)