The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yuki MORI(85hit)

81-85hit(85hit)

  • Experimental Characterization of Resonant Tunneling Chaos Generator Circuits in Microwave Frequency Range

    Umer FAROOQ  Masayuki MORI  Koichi MAEZAWA  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/11/14
      Vol:
    E106-C No:5
      Page(s):
    174-183

    We achieved detailed characterization of resonant tunneling chaos generator circuits in microwave frequency range. The circuit is analogous to Duffing oscillator, where the third-order nonlinear potential term is emulated by the nonlinear current-voltage curve of the resonant tunneling diode. The circuit includes a periodic reset mechanism to output identical chaos signal, which is essential to observe chaos signal on a sampling oscilloscope. Though this was shown to be effective in our previous papers, the length of the waveforms to observe is limited to rather short period, and it was unclear if this technique can be used for detailed characterization of such high-frequency chaos. In this paper, we improved the circuit design to observe longer waveforms, and demonstrated that the detailed characterization is possible using this periodic resetting technique with a sampling oscilloscope. The hybrid integration scheme is also used in this paper, which allows the easiest and shortest way to mimic a circuit as per circuit design, and precise estimation of circuit parameters aiming to eliminate circuit-related abnormalities. We provide deep insight into the dynamics associated with our circuit, starting from the single period, double period, chaos, and triple period regimes, by extracting power spectra, return maps, phase portraits, and bifurcation diagrams from acquired time series using sampling oscilloscope. Our method to study microwave chaotic signals can be applied to much higher frequency ranges, such as THz frequency range.

  • A Novel Displacement Sensor Based on a Frequency Delta-Sigma Modulator and its Application to a Stylus Surface Profiler

    Koichi MAEZAWA  Umer FAROOQ  Masayuki MORI  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2023/03/16
      Vol:
    E106-C No:9
      Page(s):
    486-490

    A novel displacement sensor was proposed based on a frequency delta-sigma modulator (FDSM) employing a microwave oscillator. To demonstrate basic operation, we fabricated a stylus surface profiler using a cylindrical cavity resonator, where one end of the cavity is replaced by a thin metal diaphragm with a stylus probe tip. Good surface profile was successfully obtained with this device. A 10 nm depth trench was clearly observed together with a 10 µm trench in a single scan without gain control. This result clearly demonstrates an extremely wide dynamic range of the FDSM displacement sensors.

  • Distributed Power Control for Various QoS in a CDMA Wireless System

    Hiroyuki MORIKAWA  Toru KAJIYA  Tomonori AOYAMA  Andrew T. CAMPBELL  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2429-2436

    This paper presents a distributed power control scheme for next-generation multiservices CDMA systems. CDMA has inherent capability to control the quality-of-service (QoS) requirements by assigning different power levels to each traffic type. Toward this, optimum power control schemes have been investigated. The main drawback of the previously proposed algorithms is that they would require all users' transmission state necessiating a complicated control process or peak-rate badnwidth allocation. To overcome this, we exploit the Markovian property to obtain the statistics of the traffic. The statistical formulation is presented for allocating power distributedly so as to keep the "collision" probability below a predefined probability. Numerical examples show that the distributed power control scheme allows better utilization of wireless resources through statistical multiplexing than peak-rate bandwidth assignment, and it does not require a complicated control process while keeping total transmitted power at slightly greater than optimum power control.

  • FOREWORD Open Access

    Hiroyuki MORIKAWA  

     
    FOREWORD

      Vol:
    E94-D No:6
      Page(s):
    1121-1121
  • A 12.5-ns 16-Mb CMOS SRAM with Common-Centroid-Geometry-Layout Sense Amplifiers

    Koichiro ISHIBASHI  Kunihiro KOMIYAJI  Sadayuki MORITA  Toshiro AOTO  Shuji IKEDA  Kyoichiro ASAYAMA  Atsuyosi KOIKE  Toshiaki YAMANAKA  Naotaka HASHIMOTO  Haruhito IIDA  Fumio KOJIMA  Koichi MOTOHASHI  Katsuro SASAKI  

     
    PAPER

      Vol:
    E77-C No:5
      Page(s):
    741-748

    A 16-Mb CMOS SRAM using 0.4-µm CMOS technology has been developed. This SRAM features common-centroid-geometry (CCG) layout sense amplifiers which shorten the access time by 2.4 ns. A flexible redundancy technique achieves high efficiency without any access penalty. A memory cell with stacked capacitors is fabricated for high soft-error immunity. A 16-Mb SRAM with a chip size of 215 mm2 is fabricated and an address access time of 12.5 ns has been achieved.

81-85hit(85hit)