The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

6221-6240hit(42807hit)

  • Enhancing Underwater Color Images via Optical Imaging Model and Non-Local Means Denoising

    Dubok PARK  David K. HAN  Hanseok KO  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/04/07
      Vol:
    E100-D No:7
      Page(s):
    1475-1483

    This paper proposes a novel framework for enhancing underwater images captured by optical imaging model and non-local means denoising. The proposed approach adjusts the color balance using biasness correction and the average luminance. Scene visibility is then enhanced based on an underwater optical imaging model. The increase in noise in the enhanced images is alleviated by non-local means (NLM) denoising. The final enhanced images are characterized by improved visibility while retaining color fidelity and reducing noise. The proposed method does not require specialized hardware nor prior knowledge of the underwater environment.

  • A Toolset for Validation and Verification of Automotive Control Software Using Formal Patterns

    Yunja CHOI  Dongwoo KIM  

     
    LETTER-Software System

      Pubricized:
    2017/04/19
      Vol:
    E100-D No:7
      Page(s):
    1526-1529

    An automotive control system is a typical safety-critical embedded software, which requires extensive verification and validation (V&V) activities. This article introduces a toolset for automated V&V of automotive control system, including a test generator for automotive operating systems, a task simulator for validating task design of control software, and an API-call constraint checker to check emergent properties when composing control software with its underlying operating system. To the best of our knowledge, it is the first integrated toolset that supports V&V activities for both control software and operating systems in the same framework.

  • Task Scheduling Based Redundant Task Allocation Method for the Multi-Core Systems with the DTTR Scheme

    Hiroshi SAITO  Masashi IMAI  Tomohiro YONEDA  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1363-1373

    In this paper, we propose a redundant task allocation method for multi-core systems based on the Duplication with Temporary Triple-Modular Redundancy and Reconfiguration (DTTR) scheme. The proposed method determines task allocation of a given task graph to a given multi-core system model from task scheduling in given fault patterns. Fault patterns defined in this paper consist of a set of faulty cores and a set of surviving cores. To optimize the average failure rate of the system, task scheduling minimizes the execution time of the task graph preserving the property of the DTTR scheme. In addition, we propose a selection method of fault patterns to be scheduled to reduce the task allocation time. In the experiments, at first, we evaluate the proposed selection method of fault patterns in terms of the task allocation time. Then, we compare the average failure rate among the proposed method, a task allocation method which packs tasks into particular cores as much as possible, a task allocation method based on Simulated Annealing (SA), a task allocation method based on Integer Linear Programming (ILP), and a task allocation method based on task scheduling without considering the property of the DTTR scheme. The experimental results show that task allocation by the proposed method results in nearly the same average failure rate by the SA based method with shorter task allocation time.

  • A Routing Method Using Directed Grid-Graph for Self-Aligned Quadruple Patterning

    Takeshi IHARA  Toshiyuki HONGO  Atsushi TAKAHASHI  Chikaaki KODAMA  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1473-1480

    Self-Aligned Quadruple Patterning (SAQP) is an important manufacturing technique for sub 14nm technology node. Although various routing algorithms for SAQP have been proposed, it is not easy to find a dense SAQP compliant routing pattern efficiently. Even though a grid for SAQP compliant routing pattern was proposed, it is not easy to find a valid routing pattern on the grid. The routing pattern of SAQP on the grid consists of three types of routing. Among them, third type has turn prohibition constraint on the grid. Typical routing algorithms often fail to find a valid routing for third type. In this paper, a simple directed grid-graph for third type is proposed. Valid SAQP compliant two dimensional routing patterns are found effectively by utilizing the proposed directed grid-graph. Experiments show that SAQP compliant routing patterns are found efficiently by our proposed method.

  • Spatial Co-Channel Overlap Mitigation through Channel Assignment in Dense WLAN: Potential Game Approach

    Shotaro KAMIYA  Koji YAMAMOTO  Takayuki NISHIO  Masahiro MORIKURA  Tomoyuki SUGIHARA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1094-1104

    Decentralized channel assignment schemes are proposed to obtain low system-wide spatial overlap regions in wireless local area networks (WLANs). The important point of channel assignment in WLANs is selecting channels with fewer contending stations rather than mitigating interference power due to its medium access control mechanism. This paper designs two potential game-based channel selection schemes, basically each access point (AP) selects a channel with smaller spatial overlaps with other APs. Owing to the property of potential games, each decentralized channel assignment is guaranteed to converge to a Nash equilibrium. In order that each AP selects a channel with smaller overlaps, two metrics are proposed: general overlap-based scheme yields the largest overlap reduction if a sufficient number of stations (STAs) to detect overlaps are available; whereas decomposed overlap-based scheme need not require such STAs, while the performance would be degraded due to the shadowing effect. In addition, the system-wide overlap area is analytically shown to be upper bounded by the negative potential functions, which derives the condition that local overlap reduction by each AP leads to system-wide overlap reduction. The simulation results confirm that the proposed schemes perform better reductions in the system-wide overlap area compared to the conventional interference power-based scheme under the spatially correlated shadowing effect. The experimental results demonstrate that the channel assignment dynamics converge to stable equilibria even in a real environment, particularly when uncontrollable APs exist.

  • Zero-Shot Embedding for Unseen Entities in Knowledge Graph

    Yu ZHAO  Sheng GAO  Patrick GALLINARI  Jun GUO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/04/10
      Vol:
    E100-D No:7
      Page(s):
    1440-1447

    Knowledge graph (KG) embedding aims at learning the latent semantic representations for entities and relations. However, most existing approaches can only be applied to KG completion, so cannot identify relations including unseen entities (or Out-of-KG entities). In this paper, motivated by the zero-shot learning, we propose a novel model, namely JointE, jointly learning KG and entity descriptions embedding, to extend KG by adding new relations with Out-of-KG entities. The JointE model is evaluated on entity prediction for zero-shot embedding. Empirical comparisons on benchmark datasets show that the proposed JointE model outperforms state-of-the-art approaches. The source code of JointE is available at https://github.com/yzur/JointE.

  • A Spectrum-Sharing Approach in Heterogeneous Networks Based on Multi-Objective Optimization

    Runze WU  Jiajia ZHU  Liangrui TANG  Chen XU  Xin WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/27
      Vol:
    E100-B No:7
      Page(s):
    1145-1151

    Deploying low power nodes (LPNs), which reuse the spectrum licensed to a macrocell network, is considered to be a promising way to significantly boost network capacity. Due to the spectrum-sharing, the deployment of LPNs could trigger the severe problem of interference including intra-tier interference among dense LPNs and inter-tier interference between LPNs and the macro base station (MBS), which influences the system performance strongly. In this paper, we investigate a spectrum-sharing approach in the downlink for two-tier networks, which consists of small cells (SCs) with several LPNs and a macrocell with a MBS, aiming to mitigate the interference and improve the capacity of SCs. The spectrum-sharing approach is described as a multi-objective optimization problem. The problem is solved by the nondominated sorting genetic algorithm version II (NSGA-II), and the simulations show that the proposed spectrum-sharing approach is superior to the existing one.

  • Static Mapping of Parallelizable Tasks under Deadline Constraints

    Yining XU  Ittetsu TANIGUCHI  Hiroyuki TOMIYAMA  

     
    LETTER

      Vol:
    E100-A No:7
      Page(s):
    1500-1502

    Task mapping is one of the most important design processes in embedded manycore systems. This paper proposes a static task mapping technique for manycore real-time systems. The technique minimizes the number of cores while satisfying deadline constraints of individual tasks.

  • 1-bit Band-Pass Delta-Sigma Modulator with Parallel IIR Form for Concurrent Multiband Digital Transmitter

    Takashi MAEHATA  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/01/13
      Vol:
    E100-B No:7
      Page(s):
    1152-1159

    We propose an architecture for a 1-bit band-pass delta-sigma modulator (BP-DSM) that outputs concurrent multiband RF signals. The proposed BP-DSM consists of parallel bandpass filters (BPFs) in the feedback loop to suppress the quantization noise at each target frequency band while maintaining the stability. Each BPF is based on second-order parallel infinite impulse response (IIR) filters. This architecture can unify and reconfigure the split BPFs according to the number of bands. The architecture complexity is proportional to the bandwidth of each RF signal and is independent of the carrier spacing between the bands. The conventional architecture of a concurrent multiband digital modulator, reported previously, has multiple input ports to the dedicated BPF at each band and so it cannot be efficiently integrated. Measurements show that the proposed architecture is feasible for transmitting a concurrent dual-band and a triple-band by changing the 1-bit digital data stream while keeping a data transmission rate of 10Gb/s. We demonstrate that the proposed architecture outputs the signal with LTE intra-band and inter-band carrier aggregation on 0.8GHz, 2.1GHz and 3.5GHz, each with 40MHz bandwidth in 120MHz aggregated bandwidth, whose bandwidth surpasses the bandwidth with carrier aggregation of LTE-A up to 100MHz. Adjacent channel leakage ratios of -49dBc and -46dBc are achieved at 3.5GHz in the concurrent dual-band and triple-band, respectively.

  • Scene Character Recognition Using Coupled Spatial Learning

    Zhong ZHANG  Hong WANG  Shuang LIU  Liang ZHENG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/04/17
      Vol:
    E100-D No:7
      Page(s):
    1546-1549

    Feature representation, as a key component of scene character recognition, has been widely studied and a number of effective methods have been proposed. In this letter, we propose the novel method named coupled spatial learning (CSL) for scene character representation. Different from the existing methods, the proposed CSL method simultaneously discover the spatial context in both the dictionary learning and coding stages. Concretely, we propose to build the spatial dictionary by preserving the corresponding positions of the codewords. Correspondingly, we introduce the spatial coding strategy which utilizes the spatiality regularization to consider the relationship among features in the Euclidean space. Based on the spatial dictionary and spatial coding, the spatial context can be effectively integrated in the visual representations. We verify our method on two widely used databases (ICDAR2003 and Chars74k), and the experimental results demonstrate that our method achieves competitive results compared with the state-of-the-art methods. In addition, we further validate the proposed CSL method on the Caltech-101 database for image classification task, and the experimental results show the good generalization ability of the proposed CSL.

  • Maximizing the Profit of Datacenter Networks with HPFF

    Bo LIU  Hui HU  Chao HU  Bo XU  Bing XU  

     
    LETTER-Information Network

      Pubricized:
    2017/04/05
      Vol:
    E100-D No:7
      Page(s):
    1534-1537

    Maximizing the profit of datacenter networks (DCNs) demands to satisfy more flows' requirements simultaneously, but existing schemes always allocate resource based on single flow attribute, which cannot carry out accurate resource allocation and make many flows failed. In this letter, we propose Highest Priority Flow First (HPFF) to maximize DCN profit, which allocates resource for flows according to the priority. HPFF employs a utility function that considers multiple flow attributes, including flow size, deadline and demanded bandwidth, to calculate the priority for each flow. The experiments on the testbed show that HPFF can improve the network profit by 6.75%-19.7% and decrease the number of failed flow by 26.3%-83.3% compared with existing schemes under real DCN workloads.

  • A Single Image Super-Resolution Algorithm Using Non-Local-Mean Self-Similarity and Noise-Robust Saliency Map

    Hui Jung LEE  Dong-Yoon CHOI  Kyoung Won LIM  Byung Cheol SONG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/04/05
      Vol:
    E100-D No:7
      Page(s):
    1463-1474

    This paper presents a single image super-resolution (SR) algorithm based on self-similarity using non-local-mean (NLM) metric. In order to accurately find the best self-example even under noisy environment, NLM weight is employed as a self-similarity metric. Also, a pixel-wise soft-switching is presented to overcome an inherent drawback of conventional self-example-based SR that it seldom works for texture areas. For the pixel-wise soft-switching, an edge-oriented saliency map is generated for each input image. Here, we derived the saliency map which can be robust against noises by using a specific training. The proposed algorithm works as follows: First, auxiliary images for an input low-resolution (LR) image are generated. Second, self-examples for each LR patch are found from the auxiliary images on a block basis, and the best match in terms of self-similarity is found as the best self-example. Third, a preliminary high-resolution (HR) image is synthesized using all the self-examples. Next, an edge map and a saliency map are generated from the input LR image, and pixel-wise weights for soft-switching of the next step are computed from those maps. Finally, a super-resolved HR image is produced by soft-switching between the preliminary HR image for edges and a linearly interpolated image for non-edges. Experimental results show that the proposed algorithm outperforms state-of-the-art SR algorithms qualitatively and quantitatively.

  • A New Sentiment Case-Based Recommender

    Mashael ALDAYEL  Mourad YKHLEF  

     
    PAPER-Natural Language Processing

      Pubricized:
    2017/04/05
      Vol:
    E100-D No:7
      Page(s):
    1484-1493

    Recommender systems have attracted attention in both the academic and the business areas. They aim to give users more intelligent methods for navigating and identifying complex information spaces, especially in e-commerce domain. However, these systems still have to overcome certain limitations that reduce their performance, such as overspecialization of recommendations, cold-start, and difficulties when items with unequal probability distribution exist. A novel approach addresses the above issues through a case-based recommendation methodology which is a form of content-based recommendation that is well suited to many product recommendation domains, owing to the clear organization of users' needs and preferences. Unfortunately, the experience-based roots of case-based reasoning are not clearly reflected in case-based recommenders. In other words, the concept that product cases, which are usually fixed feature-based tuples, are experiential is not adopted well in case-based recommenders. To solve this problem as well as the recommenders' rating sparsity issue, one can use product reviews which are generated from users' experience with the product a basis of product information. Our approach adapts the use of sentiment scores along with feature similarity throughout the recommendation unlike traditional case-based recommender systems, which tend to depend entirely on pure similarity-based approaches. This paper models product cases with the products' features and sentiment scores at the feature level and product level. Thus, combining user experience and similarity measures improves the recommender performance and gives users more flexibility to choose whether they prefer products more similar to their query or better qualified products. We present the results using different evaluation methods for different case structures, different numbers of similar cases retrieved and multilevel sentiment-approaches. The recommender performance was highly improved with the use of feature-level sentiment approach, which recommends product cases that are similar to the query but favored for customers.

  • On Binary Cyclic Locally Repairable Codes with Locality 2

    Yi RAO  Ruihu LI  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:7
      Page(s):
    1588-1591

    Locally repairable codes have recently been applied in distributed storage systems because of their excellent local erasure-correction capability. A locally repairable code is a code with locality r, where each code symbol can be recovered by accessing at most r other code symbols. In this paper, we study the existence and construction of binary cyclic codes with locality 2. An overview of best binary cyclic LRCs with length 7≤n≤87 and locality 2 are summarized here.

  • Small Group Detection in Crowds using Interaction Information

    Kai TAN  Linfeng XU  Yinan LIU  Bing LUO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/04/17
      Vol:
    E100-D No:7
      Page(s):
    1542-1545

    Small group detection is still a challenging problem in crowds. Traditional methods use the trajectory information to measure pairwise similarity which is sensitive to the variations of group density and interactive behaviors. In this paper, we propose two types of information by simultaneously incorporating trajectory and interaction information, to detect small groups in crowds. The trajectory information is used to describe the spatial proximity and motion information between trajectories. The interaction information is designed to capture the interactive behaviors from video sequence. To achieve this goal, two classifiers are exploited to discover interpersonal relations. The assumption is that interactive behaviors often occur in group members while there are no interactions between individuals in different groups. The pairwise similarity is enhanced by combining the two types of information. Finally, an efficient clustering approach is used to achieve small group detection. Experiments show that the significant improvement is gained by exploiting the interaction information and the proposed method outperforms the state-of-the-art methods.

  • Utilization of Path-Clustering in Efficient Stress-Control Gate Replacement for NBTI Mitigation

    Shumpei MORITA  Song BIAN  Michihiro SHINTANI  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1464-1472

    Replacement of highly stressed logic gates with internal node control (INC) logics is known to be an effective way to alleviate timing degradation due to NBTI. We propose a path clustering approach to accelerate finding effective replacement gates. Upon the observation that there exist paths that always become timing critical after aging, critical path candidates are clustered to select representative path in each cluster. With efficient data structure to further reduce timing calculation, INC logic optimization has first became tractable in practical time. Through the experiments using a processor, 171x speedup has been demonstrated while retaining almost the same level of mitigation gain.

  • Preventive Start-Time Optimization Considering Both Failure and Non-Failure Scenarios

    Stephane KAPTCHOUANG  Ihsen AZIZ OUÉDRAOGO  Eiji OKI  

     
    PAPER-Internet

      Pubricized:
    2017/01/06
      Vol:
    E100-B No:7
      Page(s):
    1124-1132

    This paper proposes a Preventive Start-time Optimization with no penalty (PSO-NP). PSO-NP determines a suitable set of Open Shortest Path First (OSPF) link weights at the network operation start time that can handle any link failure scenario preventively while considering both failure and non failure scenarios. Preventive Start-time Optimization (PSO) was designed to minimize the worst case congestion ratio (maximum link utilization over all the links in the network) in case of link failure. PSO considers all failure patterns to determine a link weight set that counters the worst case failure. Unfortunately, when there is no link failure, that link weight set leads to a higher congestion ratio than that of the conventional start-time optimization scheme. This penalty is perpetual and thus a burden especially in networks with few failures. In this work, we suppress that penalty while reducing the worst congestion ratio by considering both failure and non failure scenarios. Our proposed scheme, PSO-NP, is simple and effective in that regard. We expand PSO-NP into a Generalized Preventive Start-time Optimization (GPSO) to find a link weight set that balances both the penalty under no failure and the congestion ratio under the worst case failure. Simulation results show that PSO-NP achieves substantial congestion reduction for any failure case while suppressing the penalty in case of no failure in the network. In addition, GPSO as framework is effective in determining a suitable link weight set that considers the trade off between the penalty under non failure and the worst case congestion ratio reduction.

  • A New Bayesian Network Structure Learning Algorithm Mechanism Based on the Decomposability of Scoring Functions

    Guoliang LI  Lining XING  Zhongshan ZHANG  Yingwu CHEN  

     
    PAPER-Graphs and Networks

      Vol:
    E100-A No:7
      Page(s):
    1541-1551

    Bayesian networks are a powerful approach for representation and reasoning under conditions of uncertainty. Of the many good algorithms for learning Bayesian networks from data, the bio-inspired search algorithm is one of the most effective. In this paper, we propose a hybrid mutual information-modified binary particle swarm optimization (MI-MBPSO) algorithm. This technique first constructs a network based on MI to improve the quality of the initial population, and then uses the decomposability of the scoring function to modify the BPSO algorithm. Experimental results show that, the proposed hybrid algorithm outperforms various other state-of-the-art structure learning algorithms.

  • Reduction of Quantum Cost by Making Temporary Changes to the Function

    Nurul AIN BINTI ADNAN  Shigeru YAMASHITA  Alan MISHCHENKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/03/23
      Vol:
    E100-D No:7
      Page(s):
    1393-1402

    This paper presents a technique to reduce the quantum cost by making temporary changes to the functionality of a given Boolean function. This technique is one of the very few known methods based on manipulating Exclusive-or Sum-Of-Products (ESOP) expressions to reduce the quantum cost of the corresponding circuit. The idea involves adding Mixed Polarity Multiple-Control Toffoli (MPMCT) gates to temporarily change the functionality of the given function, so that the modified function has a smaller quantum cost. To compensate for the temporary change, additional gates are inserted into the circuit. The proposed method finds a small ESOP expression for the given function, and then finds a good pair of product terms in the ESOP expression so that the quantum cost can be reduced by applying the transformation. The proposed approach is likely to produce a better quantum cost reduction than the existing methods, and indeed experimental results confirm this expectation.

  • FOREWORD

    Makoto Ikeda  

     
    FOREWORD

      Vol:
    E100-A No:7
      Page(s):
    1362-1362
6221-6240hit(42807hit)